Do you want to publish a course? Click here

Regular Reduction of Controlled Hamiltonian System with Symplectic Structure and Symmetry

234   0   0.0 ( 0 )
 Added by Hong Wang
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, our goal is to study the regular reduction theory of regular controlled Hamiltonian (RCH) systems with symplectic structure and symmetry, and this reduction is an extension of regular symplectic reduction theory of Hamiltonian systems under regular controlled Hamiltonian equivalence conditions. Thus, in order to describe uniformly RCH systems defined on a cotangent bundle and on the regular reduced spaces, we first define a kind of RCH systems on a symplectic fiber bundle. Then introduce regular point and regular orbit reducible RCH systems with symmetry by using momentum map and the associated reduced symplectic forms. Moreover, we give regular point and regular orbit reduction theorems for RCH systems to explain the relationships between RpCH-equivalence, RoCH-equivalence for reducible RCH systems with symmetry and RCH-equivalence for associated reduced RCH systems. Finally, as an application we regard rigid body and heavy top as well as them with internal rotors as the regular point reducible RCH systems on the rotation group $textmd{SO}(3)$ and on the Euclidean group $textmd{SE}(3)$,as well as on their generalizations, respectively, and discuss their RCH-equivalence. We also describe the RCH system and RCH-equivalence from the viewpoint of port Hamiltonian system with a symplectic structure.



rate research

Read More

We introduce new invariants associated to collections of compact subsets of a symplectic manifold. They are defined through an elementary-looking variational problem involving Poisson brackets. The proof of the non-triviality of these invariants involves various flavors of Floer theory. We present applications to approximation theory on symplectic manifolds and to Hamiltonian dynamics.
356 - Boris Khesin 2011
We present the Hamiltonian formalism for the Euler equation of symplectic fluids, introduce symplectic vorticity, and study related invariants. In particular, this allows one to extend D.Ebins long-time existence result for geodesics on the symplectomorphism group to metrics not necessarily compatible with the symplectic structure. We also study the dynamics of symplectic point vortices, describe their symmetry groups and integrability.
For the case of generic 4D symplectic maps with a mixed phase space we investigate the global organization of regular tori. For this we compute elliptic 1-tori of two coupled standard maps and display them in a 3D phase-space slice. This visualizes how all regular 2-tori are organized around a skeleton of elliptic 1-tori in the 4D phase space. The 1-tori occur in two types of one-parameter families: (a) Lyapunov families emanating from elliptic-elliptic periodic orbits, which are observed to exist even far away from them and beyond major resonance gaps, and (b) families originating from rank-1 resonances. At resonance gaps of both types of families either (i) periodic orbits exist, similar to the Poincare-Birkhoff theorem for 2D maps, or (ii) the family may form large bends. In combination these results allow for describing the hierarchical structure of regular tori in the 4D phase space analogously to the islands-around-islands hierarchy in 2D maps.
Let $M$ be a closed Fano symplectic manifold with a semifree Hamiltonian circle action with isolated maximum. We compute the Gromov width and the Hofer-Zehnder capacity of $M$ using a moment map.
We study configurations of disjoint Lagrangian submanifolds in certain low-dimensional symplectic manifolds from the perspective of the geometry of Hamiltonian maps. We detect infinite-dimensional flats in the Hamiltonian group of the two-sphere equipped with Hofers metric, prove constraints on Lagrangian packing, find instances of Lagrangian Poincar{e} recurrence, and present a new hierarchy of normal subgroups of area-preserving homeomorphisms of the two-sphere. The technology involves Lagrangian spectral invariants with Hamiltonian term in symmetric product orbifolds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا