Do you want to publish a course? Click here

Chiral molecular films as electron polarizers and polarization modulators

114   0   0.0 ( 0 )
 Added by Ernesto Medina
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent experiments on electron scattering through molecular films have shown that chiral molecules can be efficient sources of polarized electrons even in the absence of heavy nuclei as source of a strong spin-orbit interaction. We show that self-assembled monolayers (SAMs) of chiral molecules are strong electron polarizers due to the high density effect of the monolayers and explicitly compute the scattering amplitude off a helical molecular model of carbon atoms. Longitudinal polarization is shown to be the signature of chiral scattering. For elastic scattering, we find that at least double scattering events must take place for longitudinal polarization to arise. We predict energy windows for strong polarization, determined by the energy dependences of spin-orbit strength and multiple scattering probability. An incoherent mechanism for polarization amplification is proposed, that increases the polarization linearly with the number of helix turns, consistent with recent experiments on DNA SAMs.



rate research

Read More

A method for measuring the degree of spin polarization of magnetic materials based on spin-dependent resonant tunneling is proposed. The device we consider is a ballistic double-barrier resonant structure consisting of a ferromagnetic layer embedded between two insulating barriers. A simple procedure, based on a detailed analysis of the differential conductance, allows to accurately determine the polarization of the ferromagnet. The spin-filtering character of such a system is furthermore addressed. We show that a 100% spin selectivity can be achieved under appropriate conditions. This approach is believed to be well suited for the investigation of diluted magnetic semiconductor heterostructures.
The molecular compound K$_6$[V$^{IV}_{15}$As$^{III}_6$O$_{42}$(H$_2$O)] $cdot$ 8H$_2$O, in short V$_{15}$, has shown important quantum effects such as coherent spin oscillations. The details of the spin quantum dynamics depend on the exact form of the spin Hamiltonian. In this study, we present a precise analysis of the intramolecular interactions in V$_{15}$. To that purpose, we performed high-field electron spin resonance measurements at 120 GHz and extracted the resonance fields as a function of crystal orientation and temperature. The data are compared against simulations using exact diagonalization to obtain the parameters of the molecular spin Hamiltonian.
Single molecular electrets exhibiting single molecule electric polarization switching have been long desired as a platform for extremely small non-volatile storage devices, although it is controversial because of the poor stability of single molecular electric dipoles. Here we study the single molecular device of GdC82, where the encapsulated Gd atom forms a charge center, and we have observed a gate controlled switching behavior between two sets of single electron transport stability diagrams. The switching is operated in a hysteresis loop with a coercive gate field of around 0.5Vnm. Theoretical calculations have assigned the two conductance diagrams to corresponding energy levels of two states that the Gd atom is trapped at two different sites of the C82 cage, which possess two different permanent electrical dipole orientations. The two dipole states are stabilized by the anisotropic energy and separated by a transition energy barrier of 70 meV. Such switching is then accessed to the electric field driven reorientation of individual dipole while overcoming the barriers by the coercive gate field, and demonstrates the creation of a single molecular electret.
The lack of long range order in organic semiconductor thin films prevents the unveiling of the complete nature of excitons in optical experiments, because the diffraction limited beam diameters in the bandgap region far exceed typical crystalline grain sizes. Here we present spatially-, temporally- and polarization-resolved dual photoluminescence/linear dichroism microscopy experiments that investigate exciton states within a single crystalline grain in solution-processed phthalocyanine thin films. These experiments reveal the existence of a delocalized singlet exciton, polarized along the high mobility axis in this quasi-1D electronic system. The strong delocalized {pi} orbitals overlap controlled by the molecular stacking along the high mobility axis is responsible for breaking the radiative recombination selection rules. Using our linear dichroism scanning microscopy setup we further established a rotation of molecules (i.e. a structural phase transition) that occurs above 100 K prevents the observation of this exciton at room temperature.
An equilibrium phase diagram for the shape of compressively strained free-hanging films is developed by total strain energy minimization. For small strain gradients {Delta}{epsilon}, the film wrinkles, while for sufficiently large {Delta}{epsilon}, a phase transition from wrinkling to bending occurs. We consider competing relaxation mechanisms for free-hanging films, which have rolled up into tube structures, and we provide an upper limit for the maximum achievable number of tube rotations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا