Do you want to publish a course? Click here

Searches for very high energy gamma rays from blazars with CANGAROO-III telescope in 2005-2009

114   0   0.0 ( 0 )
 Added by Yoshitaka Mizumura
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have searched for very high energy (VHE) gamma rays from four blazars using the CANGAROO-III imaging atmospheric Cherenkov telescope. We report the results of the observations of H 2356-309, PKS 2155-304, PKS 0537-441, and 3C 279, performed from 2005 to 2009, applying a new analysis to suppress the effects of the position dependence of Cherenkov images in the field of view. No significant VHE gamma ray emission was detected from any of the four blazars. The GeV gamma-ray spectra of these objects were obtained by analyzing Fermi/LAT archival data. Non-simultaneous wide range (radio to VHE gamma-ray bands) spectral energy distributions (SEDs) including CANGAROO-III upper limits, GeV gamma-ray spectra, and archival data are discussed using a one-zone synchrotron self-Compton (SSC) model in combination with a external Compton (EC) radiation. The HBLs (H 2356-309 and PKS 2155-304) can be explained by a simple SSC model, and PKS 0537-441 and 3C 279 are well modeled by a combination of SSC and EC model. We find a consistency with the blazar sequence in terms of strength of magnetic field and component size.



rate research

Read More

SS433, located at the center of the supernova remnant W50, is a close proximity binary system consisting of a compact star and a normal star. Jets of material are directed outwards from the vicinity of the compact star symmetrically to the east and west. Non-thermal hard X-ray emission is detected from lobes lying on both sides. Shock accelerated electrons are expected to generate sub-TeV gamma rays through the inverse-Compton process in the lobes. Observations of the western X-ray lobe region of SS433/W50 system have been performed to detect sub-TeV gamma-rays using the 10m CANGAROO-II telescope in August and September, 2001, and July and September, 2002. The total observation times are 85.2 hours for ON source, and 80.8 hours for OFF source data. No significant excess of sub-TeV gamma rays has been found at 3 regions of the western X-ray lobe of SS433/W50 system. We have derived 99% confidence level upper limits to the fluxes of gamma rays and have set constraints on the strengths of the magnetic fields assuming the synchrotron/inverse-Compton model for the wide energy range of photon spectrum from radio to TeV. The derived lower limits are 4.3 microgauss for the center of the brightest X-ray emission region and 6.3 microgauss for the far end from SS433 in the western X-ray lobe. In addition, we suggest that the spot-like X-ray emission may provide a major contribution to the hardest X-ray spectrum in the lobe.
Because accretion and merger shocks in clusters of galaxies may accelerate particles to high energies, clusters are candidate sites for the origin of ultra-high-energy (UHE) cosmic-rays. A prediction was presented for gamma-ray emission from a cluster of galaxies at a detectable level with the current generation of imaging atmospheric Cherenkov telescopes. The gamma-ray emission was produced via inverse Compton upscattering of cosmic microwave background (CMB) photons by electron-positron pairs generated by collisions of UHE cosmic rays in the cluster. We observed two clusters of galaxies, Abell 3667 and Abell 4038, searching for very-high-energy gamma-ray emission with the CANGAROO-III atmospheric Cherenkov telescope system in 2006. The analysis showed no significant excess around these clusters, yielding upper limits on the gamma-ray emission. From a comparison of the upper limit for the north-west radio relic region of Abell 3667 with a model prediction, we derive a lower limit for the magnetic field of the region of ~0.1 micro G. This shows the potential of gamma-ray observations in studies of the cluster environment. We also discuss the flux upper limit from cluster center regions using a model of gamma-ray emission from neutral pions produced in hadronic collisions of cosmic-ray protons with the intra-cluster medium (ICM). The derived upper limit of the cosmic-ray energy density within this framework is an order of magnitude higher than that of our Galaxy.
The BL Lacertae object 1ES 1440+122 was observed in the energy range from 85 GeV to 30 TeV by the VERITAS array of imaging atmospheric Cherenkov telescopes. The observations, taken between 2008 May and 2010 June and totalling 53 hours, resulted in the discovery of $gamma$-ray emission from the blazar, which has a redshift $z$=0.163. 1ES 1440+122 is detected at a statistical significance of 5.5 standard deviations above the background with an integral flux of (2.8$pm0.7_{mathrm{stat}}pm0.8_{mathrm{sys}}$) $times$ 10$^{-12}$ cm$^{-2}$ s$^{-1}$ (1.2% of the Crab Nebulas flux) above 200 GeV. The measured spectrum is described well by a power law from 0.2 TeV to 1.3 TeV with a photon index of 3.1 $pm$ 0.4$_{mathrm{stat}}$ $pm$ 0.2$_{mathrm{sys}}$. Quasi-simultaneous multi-wavelength data from the Fermi Large Area Telescope (0.3--300 GeV) and the Swift X-ray Telescope (0.2--10 keV) are additionally used to model the properties of the emission region. A synchrotron self-Compton model produces a good representation of the multi-wavelength data. Adding an external-Compton or a hadronic component also adequately describes the data.
In this work we study how the cosmological parameter, the Hubble constant $H_0$, can be constrained by observation of very high energy (VHE) $gamma$-rays at the TeV scale. The VHE $gamma$-rays experience attenuation by background radiation field through $e^+e^-$ pair production during the propagation in the intergalactic space. This effect is proportional to the distance that the VHE $gamma$-rays go through. Therefore the absorption of TeV $gamma$-rays can be taken as cosmological distance indicator to constrain the cosmological parameters. Two blazars Mrk 501 and 1ES 1101-232, which have relatively good spectra measurements by the atmospheric Cerenkov telescope, are studied to constrain $H_0$. The mechanism constraining the Hubble constant adopted here is very different from the previous methods such as the observations of type Ia supernovae and the cosmic microwave background. However, at $2sigma$ level, our result is consistent with other methods.
126 - T.Mizukami , H.Kubo , T.Yoshida 2011
We report the detection, with the CANGAROO-III imaging atmospheric Cherenkov telescope array, of a very high energy gamma-ray signal from the unidentified gamma-ray source HESS J1614-518, which was discovered in the H.E.S.S. Galactic plane survey. Diffuse gamma-ray emission was detected above 760 GeV at the 8.9 sigma level during an effective exposure of 54 hr from 2008 May to August. The spectrum can be represented by a power-law: 8.2+-2.2_{stat}+-2.5_{sys}x10^{-12}x (E/1TeV)^{-Gamma} cm^{-2} s^{-1} TeV^{-1} with a photon index Gamma of 2.4+-0.3_{stat}+-0.2_{sys}, which is compatible with that of the H.E.S.S. observations. By combining our result with multi-wavelength data, we discuss the possible counterparts for HESS J1614-518 and consider radiation mechanisms based on hadronic and leptonic processes for a supernova remnant, stellar winds from massive stars, and a pulsar wind nebula. Although a leptonic origin from a pulsar wind nebula driven by an unknown pulsar remains possible, hadronic-origin emission from an unknown supernova remnant is preferred.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا