Do you want to publish a course? Click here

Discovery of Very High Energy Gamma Rays from 1ES 1440+122

103   0   0.0 ( 0 )
 Added by Jon Dumm
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The BL Lacertae object 1ES 1440+122 was observed in the energy range from 85 GeV to 30 TeV by the VERITAS array of imaging atmospheric Cherenkov telescopes. The observations, taken between 2008 May and 2010 June and totalling 53 hours, resulted in the discovery of $gamma$-ray emission from the blazar, which has a redshift $z$=0.163. 1ES 1440+122 is detected at a statistical significance of 5.5 standard deviations above the background with an integral flux of (2.8$pm0.7_{mathrm{stat}}pm0.8_{mathrm{sys}}$) $times$ 10$^{-12}$ cm$^{-2}$ s$^{-1}$ (1.2% of the Crab Nebulas flux) above 200 GeV. The measured spectrum is described well by a power law from 0.2 TeV to 1.3 TeV with a photon index of 3.1 $pm$ 0.4$_{mathrm{stat}}$ $pm$ 0.2$_{mathrm{sys}}$. Quasi-simultaneous multi-wavelength data from the Fermi Large Area Telescope (0.3--300 GeV) and the Swift X-ray Telescope (0.2--10 keV) are additionally used to model the properties of the emission region. A synchrotron self-Compton model produces a good representation of the multi-wavelength data. Adding an external-Compton or a hadronic component also adequately describes the data.



rate research

Read More

Blazars are the most abundant class of known extragalactic very-high-energy (VHE, E>100 GeV) gamma-ray sources. However, one of the biggest difficulties in investigating their VHE emission resides in their limited number, since less than 60 of them are known by now. In this contribution we report on H.E.S.S. observations of the BL Lac object PKS 1440-389. This source has been selected as target for H.E.S.S. based on its high-energy gamma-ray properties measured by Fermi-LAT. The extrapolation of this bright, hard-spectrum gamma-ray blazar into the VHE regime made a detection on a relatively short time scale very likely, despite its uncertain redshift. H.E.S.S. observations were carried out with the 4-telescope array from February to May 2012 and resulted in a clear detection of the source. Contemporaneous multi-wavelength data are used to construct the spectral energy distribution of PKS 1440-389 which can be described by a simple one-zone synchrotron-self Compton model.
Motivated by the Costamante & Ghisellini (2002) predictions we investigated if the blazar 1ES 1727+502 (z=0.055) is emitting very high energy (VHE, E>100 GeV) gamma rays. We observed the BL Lac object 1ES 1727+502 in stereoscopic mode with the two MAGIC telescopes during 14 nights between May 6th and June 10th 2011, for a total effective observing time of 12.6 hours. For the study of the multiwavelength spectral energy distribution (SED) we use simultaneous optical R-band data from the KVA telescope, archival UV/optical and X-ray observations by instruments UVOT and XRT on board of the Swift satellite and high energy (HE, 0.1 GeV - 100 GeV) gamma-ray data from the Fermi-LAT instrument. We detect, for the first time, VHE gamma-ray emission from 1ES 1727+502 at a statistical significance of 5.5 sigma. The integral flux above 150 GeV is estimated to be (2.1pm0.4)% of the Crab Nebula flux and the de-absorbed VHE spectrum has a photon index of (2.7pm0.5). No significant short-term variability was found in any of the wavebands presented here. We model the SED using a one-zone synchrotron self-Compton model obtaining parameters typical for this class of sources.
The number of known very high energy (VHE) blazars is $sim,50$, which is very small in comparison to the number of blazars detected in other frequencies. This situation is a handicap for population studies of blazars, which emit about half of their luminosity in the $gamma$-ray domain. Moreover, VHE blazars, if distant, allow for the study of the environment that the high-energy $gamma$-rays traverse in their path towards the Earth, like the extragalactic background light (EBL) and the intergalactic magnetic field (IGMF), and hence they have a special interest for the astrophysics community. We present the first VHE detection of 1ES,0033+595 with a statistical significance of 5.5,$sigma$. The VHE emission of this object is constant throughout the MAGIC observations (2009 August and October), and can be parameterized with a power law with an integral flux above 150 GeV of $(7.1pm1.3)times 10^{-12} {mathrm{ph,cm^{-2},s^{-1}}}$ and a photon index of ($3.8pm0.7$). We model its spectral energy distribution (SED) as the result of inverse Compton scattering of synchrotron photons. For the study of the SED we used simultaneous optical R-band data from the KVA telescope, archival X-ray data by textit{Swift} as well as textit{INTEGRAL}, and simultaneous high energy (HE, $300$,MeV~--~$10$,GeV) $gamma$-ray data from the textit{Fermi} LAT observatory. Using the empirical approach of Prandini et al. (2010) and the textit{Fermi}-LAT and MAGIC spectra for this object, we estimate the redshift of this source to be $0.34pm0.08pm0.05$. This is a relevant result because this source is possibly one of the ten most distant VHE blazars known to date, and with further (simultaneous) observations could play an important role in blazar population studies, as well as future constraints on the EBL and IGMF.
The high-frequency-peaked BL-Lacertae object objectname{1ES 0806+524}, at redshift z=0.138, was observed in the very-high-energy (VHE) gamma-ray regime by VERITAS between November 2006 and April 2008. These data encompass the two-, and three-telescope commissioning phases, as well as observations with the full four-telescope array. objectname{1ES 0806+524} is detected with a statistical significance of 6.3 standard deviations from 245 excess events. Little or no measurable variability on monthly time scales is found. The photon spectrum for the period November 2007 to April 2008 can be characterized by a power law with photon index $3.6 pm 1.0_{mathrm{stat}} pm 0.3_{mathrm{sys}}$ between $sim$300 GeV and $sim$700 GeV. The integral flux above 300 GeV is $(2.2pm0.5_{mathrm{stat}}pm0.4_{mathrm{sys}})times10^{-12}:mathrm{cm}^{2}:mathrm{s}^{-1}$ which corresponds to 1.8% of the Crab Nebula flux. Non contemporaneous multiwavelength observations are combined with the VHE data to produce a broadband spectral energy distribution that can be reasonably described using a synchrotron-self Compton model.
In this work we study how the cosmological parameter, the Hubble constant $H_0$, can be constrained by observation of very high energy (VHE) $gamma$-rays at the TeV scale. The VHE $gamma$-rays experience attenuation by background radiation field through $e^+e^-$ pair production during the propagation in the intergalactic space. This effect is proportional to the distance that the VHE $gamma$-rays go through. Therefore the absorption of TeV $gamma$-rays can be taken as cosmological distance indicator to constrain the cosmological parameters. Two blazars Mrk 501 and 1ES 1101-232, which have relatively good spectra measurements by the atmospheric Cerenkov telescope, are studied to constrain $H_0$. The mechanism constraining the Hubble constant adopted here is very different from the previous methods such as the observations of type Ia supernovae and the cosmic microwave background. However, at $2sigma$ level, our result is consistent with other methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا