Do you want to publish a course? Click here

On deformations of triangulated models

222   0   0.0 ( 0 )
 Added by Wendy Lowen
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

This paper is the first part of a project aimed at understanding deformations of triangulated categories, and more precisely their dg and A infinity models, and applying the resulting theory to the models occurring in the Homological Mirror Symmetry setup. In this first paper, we focus on models of derived and related categories, based upon the classical construction of twisted objects over a dg or $A_{infty}$-algebra. For a Hochschild 2 cocycle on such a model, we describe a corresponding curvature compensating deformation which can be entirely understood within the framework of twisted objects. We unravel the construction in the specific cases of derived A infinity and abelian categories, homotopy categories, and categories of graded free qdg-modules. We identify a purity condition on our models which ensures that the structure of the model is preserved under deformation. This condition is typically fulfilled for homotopy categories, but not for unbounded derived categories.



rate research

Read More

We show that a well behaved Noetherian, finite dimensional, stable, monoidal model category is equivalent to a model built from categories of modules over completed rings in an adelic fashion. For abelian groups this is based on the Hasse square, for chromatic homotopy theory this is based on the chromatic fracture square, and for rational torus-equivariant homotopy theory this is the model of Greenlees-Shipley arXiv:1101.2511.
We interpret all Maurer-Cartan elements in the formal Hochschild complex of a small dg category which is cohomologically bounded above in terms of torsion Morita deformations. This solves the curvature problem, i.e. the phenomenon that such Maurer-Cartan elements naturally parameterize curved A_infinity deformations. In the infinitesimal setup, we show how (n+1)-th order curved deformations give rise to n-th order uncurved Morita deformations.
The combinatorial mutation of polygons, which makes a given lattice polygon another one, is an important operation to understand mirror partners for two-dimensional Fano manifolds, and the mutation-equivalent polygons give the $mathbb{Q}$-Gorenstein deformation-equivalent toric varieties. On the other hand, for a dimer model, which is a bipartite graph described on the real two-torus, we assign the lattice polygon called the perfect matching polygon. It is known that for each lattice polygon $P$ there exists a dimer model such that it gives $P$ as the perfect matching polygon and satisfies the consistency condition. Moreover, a dimer model has rich information regarding toric geometry associated with the perfect matching polygon. In this paper, we introduce a set of operations that we call the deformations of consistent dimer models, and show that the deformations of consistent dimer models induce the combinatorial mutations of the associated perfect matching polygons.
Motivated by the BPS/CFT correspondence, we explore the similarities between the classical $beta$-deformed Hermitean matrix model and the $q$-deformed matrix models associated to 3d $mathcal{N}=2$ supersymmetric gauge theories on $D^2times_{q}S^1$ and $S_b^3$ by matching parameters of the theories. The novel results that we obtain are the correlators for the models, together with an additional result in the classical case consisting of the $W$-algebra representation of the generating function. Furthermore, we also obtain surprisingly simple expressions for the expectation values of characters which generalize previously known results.
Let $mathcal{C}$ be a triangulated category. We first introduce the notion of balanced pairs in $mathcal{C}$, and then establish the bijective correspondence between balanced pairs and proper classes $xi$ with enough $xi$-projectives and enough $xi$-injectives. Assume that $xi:=xi_{mathcal{X}}=xi^{mathcal{Y}}$ is the proper class induced by a balanced pair $(mathcal{X},mathcal{Y})$. We prove that $(mathcal{C}, mathbb{E}_xi, mathfrak{s}_xi)$ is an extriangulated category. Moreover, it is proved that $(mathcal{C}, mathbb{E}_xi, mathfrak{s}_xi)$ is a triangulated category if and only if $mathcal{X}=mathcal{Y}=0$; and that $(mathcal{C}, mathbb{E}_xi, mathfrak{s}_xi)$ is an exact category if and only if $mathcal{X}=mathcal{Y}=mathcal{C}$. As an application, we produce a large variety of examples of extriangulated categories which are neither exact nor triangulated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا