Do you want to publish a course? Click here

Critical Temperature Oscillations and Reentrant Superconductivity due to the FFLO like State in F/S/F Trilayers

117   0   0.0 ( 0 )
 Added by Vladimir Zdravkov
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ferromagnet/Superconductor/Ferromagnet (F/S/F) trilayers, in which the establishing of a Fulde-Ferrell Larkin-Ovchinnikov (FFLO) like state leads to interference effects of the superconducting pairing wave function, form the core of the superconducting spin valve. The realization of strong critical temperature oscillations in such trilayers, as a function of the ferromagnetic layer thicknesses or, even more efficient, reentrant superconductivity, are the key condition to obtain a large spin valve effect, i.e. a large shift in the critical temperature. Both phenomena have been realized experimentally in the Cu 41 Ni 59 /Nb/Cu 41 Ni 59 trilayers investigated in the present work.



rate research

Read More

Ferromagnet/Superconductor/Ferromagnet (F/S/F) trilayers constitute the core of a superconducting spin valve. The switching effect of the spin valve is based on interference phenomena occurring due to the proximity effect at the S/F interfaces. A remarkable effect is only expected if the core structure exhibits strong critical temperature oscillations, or most favorable, reentrant superconductivity, when the thickness of the ferromagnetic layer is increased. The core structure has to be grown on an antiferromagnetic oxide layer (or such layer to be placed on top) to pin by exchange bias the magnetization-orientation of one of the ferromagnetic layers. In the present paper we demonstrate that this is possible, keeping the superconducting behavior of the core structure undisturbed.
70 - D. Lenk , M. Hemmida , R. Morari 2016
We investigated the upper critical magnetic field, $H_{c}$, of a superconductor-ferromagnet (S/F) bilayer of Nb/Cu$_{41}$Ni$_{59}$ and a Nb film (as reference). We obtained the dependence of $H_{cperp}$ and $H_{cparallel}$ (perpendicular and parallel to the film plane, respectively) on the temperature, $T$, by measurements of the resistive transitions and the dependence on the inclination angle, $theta$, of the applied field to the film plane, by non-resonant microwave absorption. Over a wide range, $H_{cperp}$ and $H_{cparallel}$ show the temperature dependence predicted by the Ginzburg-Landau theory. At low temperatures and close to the critical temperature deviations are observed. While $H_{c}(theta)$ of the Nb film follows the Tinkham prediction for thin superconducting films, the Nb/Cu$_{41}$Ni$_{59}$-bilayer data exhibit deviations when $theta$ approaches zero. We attribute this finding to the additional anisotropy induced by the quasi-one-dimensional Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-like state and propose a new vortex structure in S/F bilayers, adopting the segmentation approach from high-temperature superconductors.
96 - Matthias Eschrig 2015
Andreev bound states are an expression of quantum coherence between particles and holes in hybrid structures composed of superconducting and non-superconducting metallic parts. Their spectrum carries important information on the nature of the pairing, and determines the current in Josephson devices. Here I give a short review on Andreev bound states in systems involving superconductors and ferromagnets with strong spin-polarization. I show how the processes of spin-dependent scattering phase shifts and of triplet rotation influence Andreev point contact spectra, and provide a general framework for non-local Andreev phenomena in such structures in terms of coherence functions. Finally, I demonstrate how the concept of coherence functions cross-links wave-function and Green-function based theories, by showing that coherence functions fulfilling the equations of motion for quasiclassical Green functions can be used to derive a set of generalised Andreev equations.
205 - Youichi Yanase 2008
The Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state near the antiferromagnetic quantum critical point (AFQCP) is investigated by analyzing the two dimensional Hubbard model on the basis of the fluctuation exchange (FLEX) approximation. The phase diagram against the magnetic field and temperature is compared with that obtained in the BCS theory. We discuss the influences of the antiferromagnetic spin fluctuation through the quasiparticle scattering, retardation effect, parity mixing and internal magnetic field. It is shown that the FFLO state is stable in the vicinity of AFQCP even though the quasiparticle scattering due to the spin fluctuation is destructive to the FFLO state. The large positive slope dH_{FFLO}/dT and the convex curvature (d^{2}H_{FFLO}/dT^{2} > 0) are obtained, where H_{FFLO} is the critical magnetic field for the second order phase transition from the uniform BCS state to the FFLO state. These results are consistent with the experimental results in CeCoIn_5. The possible magnetic transition in the FFLO state is examined.
Superconductivity (SC) and charge-density wave (CDW) are two contrasting yet relevant collective electronic states which have received sustained interest for decades. Here we report that, in a layered europium bismuth sulfofluoride, EuBiS$_2$F, a CDW-like transition occurs at 280 K, below which SC emerges at 0.3 K, without any extrinsic doping. The Eu ions were found to exhibit an anomalously temperature-independent mixed valence of about +2.2, associated with the formation of CDW. The mixed valence of Eu gives rise to self electron doping into the conduction bands mainly consisting of the in-plane Bi-6$p$ states, which in turn brings about the CDW and SC. In particular, the electronic specific-heat coefficient is enhanced by ~ 50 times, owing to the significant hybridizations between Eu-4$f$ and Bi-6$p$ electrons, as verified by band-structure calculations. Thus, EuBiS$_2$F manifests itself as an unprecedented material that simultaneously accommodates SC, CDW and $f$-electron valence instability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا