Do you want to publish a course? Click here

The Effects of Primordial Non-Gaussianity on Giant-Arc Statistics: A Scale Dependent Example

138   0   0.0 ( 0 )
 Added by Anson D'Aloisio
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a recently published article, we quantified the impact of primordial non-Gaussianity on the probability of giant-arc formation. In that work, we focused on the local form of non-Gaussianity and found that it can have only a modest effect given the most recent constraints from Cosmic Microwave Background (CMB) measurements. Here, we present new calculations using a parameterization of scale-dependent non-Gaussianity in which the primordial bispectrum has the equilateral shape and the effective f_NL parameter depends on scale. We find that non-Gaussianity of this type can yield a larger effect on the giant-arc abundance compared to the local form due to both the scale dependence and the relatively weaker constraints on the equilateral shape from CMB measurements. In contrast to the maximum ~40% effect (within the latest CMB constraints) previously found for the local form, we find that the predicted giant-arc abundance for the scale-dependent equilateral form can differ by a factor of a few with respect to the Gaussian case.



rate research

Read More

For over a decade, it has been debated whether the concordance LCDM model is consistent with the observed abundance of giant arcs in clusters. While previous theoretical studies have focused on properties of the lens and source populations, as well as cosmological effects such as dark energy, the impact of initial conditions on the giant-arc abundance is relatively unexplored. Here, we quantify the impact of non-Gaussian initial conditions with the local bispectrum shape on the predicted frequency of giant arcs. Using a path-integral formulation of the excursion set formalism, we extend a semi-analytic model for calculating halo concentrations to the case of primordial non-Gaussianity, which may be useful for applications outside of this work. We find that massive halos tend to collapse earlier in models with positive f_NL, relative to the Gaussian case, leading to enhanced concentration parameters. The converse is true for f_NL < 0. In addition to these effects, which change the lensing cross sections, non-Gaussianity also modifies the abundance of supercritical clusters available for lensing. These combined effects work together to either enhance (f_NL > 0) or suppress (f_NL < 0) the probability of giant-arc formation. Using the best value and 95% confidence levels currently available from the Wilkinson Microwave Anisotropy Probe, we find that the giant-arc optical depth for sources at z_s~2 is enhanced by ~20% and ~45% for f_NL = 32 and 74 respectively. In contrast, we calculate a suppression of ~5% for f_NL = -10. These differences translate to similar relative changes in the predicted all-sky number of giant arcs.
(ABRIDGED)The rise of cosmic structure depends upon the statistical distribution of initial density fluctuations generated by inflation. While the simplest models predict an almost perfectly Gaussian distribution, more-general models predict a level of primordial non-Gaussianity (PNG) that observations might yet be sensitive enough to detect. Recent Planck Collaboration measurements of the CMB temperature anisotropy bispectrum significantly tighten the observational limits, but they are still far from the PNG level predicted by the simplest models of inflation. Probing levels below CMB sensitivities will require other methods, such as searching for the statistical imprint of PNG on galactic halo clustering. During the epoch of reionization (EoR), the first stars and galaxies released radiation into the intergalactic medium (IGM) that created ionized patches whose large-scale geometry and evolution reflected the underlying abundance and large-scale clustering of the star-forming galaxies. This statistical connection between ionized patches in the IGM and galactic halos suggests that observing reionization may be another way to constrain PNG. We employ the linear perturbation theory of reionization and semi-analytic models based on the excursion-set formalism to model the effects of PNG on the EoR. We quantify the effects of PNG on the large-scale structure of reionization by deriving the ionized density bias, i.e. ratio of ionized atomic to total matter overdensities in Fourier space, at small wavenumber. Just as previous studies found that PNG creates a scale-dependent signature in the halo bias, so, too, we find a scale-dependent signature in the ionized density bias. Our results, which differ significantly from previous attempts in the literature to characterize this PNG signature, will be applied elsewhere to predict its observable consequences, e.g. in the cosmic 21cm background.
We measure the large-scale bias of dark matter halos in simulations with non-Gaussian initial conditions of the local type, and compare this bias to the response of the mass function to a change in the primordial amplitude of fluctuations. The two are found to be consistent, as expected from physical arguments, for three halo-finder algorithms which use different Spherical Overdensity (SO) and Friends-of-Friends (FoF) methods. On the other hand, we find that the commonly used prediction for universal mass functions, that the scale-dependent bias is proportional to the first-order Gaussian Lagrangian bias, does not yield a good agreement with the measurements. For all halo finders, high-mass halos show a non-Gaussian bias suppressed by 10-15% relative to the universal mass function prediction. For SO halos, this deviation changes sign at low masses, where the non-Gaussian bias becomes larger than the universal prediction.
Here we review the present status of modelling of and searching for primordial non-Gaussianity of cosmological perturbations. After introducing the models for non-Gaussianity generation during inflation, we discuss the search for non-Gaussian signatures in the Cosmic Microwave Background and in the Large-Scale Structure of the Universe.
Our current understanding of the Universe is established through the pristine measurements of structure in the cosmic microwave background (CMB) and the distribution and shapes of galaxies tracing the large scale structure (LSS) of the Universe. One key ingredient that underlies cosmological observables is that the field that sources the observed structure is assumed to be initially Gaussian with high precision. Nevertheless, a minimal deviation from Gaussianityis perhaps the most robust theoretical prediction of models that explain the observed Universe; itis necessarily present even in the simplest scenarios. In addition, most inflationary models produce far higher levels of non-Gaussianity. Since non-Gaussianity directly probes the dynamics in the early Universe, a detection would present a monumental discovery in cosmology, providing clues about physics at energy scales as high as the GUT scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا