Do you want to publish a course? Click here

Eclipses observed by LYRA - a sensitive tool to test the models for the solar irradiance

108   0   0.0 ( 0 )
 Added by Alexander Shapiro
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the light curves of the recent solar eclipses measured by the Herzberg channel (200-220 nm) of the Large Yield RAdiometer (LYRA) onboard PROBA-2. The measurements allow us to accurately retrieve the center- to-limb variations (CLV) of the solar brightness. The formation height of the radiation depends on the observing angle so the examination of the CLV provide information about a broad range of heights in the solar atmosphere. We employ the 1D NLTE radiative transfer COde for Solar Irradiance (COSI) to model the measured light curves and corresponding CLV dependencies. The modeling is used to test and constrain the existing 1D models of the solar atmosphere, e.g. the temperature structure of the photosphere and the treatment of the pseudo- continuum opacities in the Herzberg continuum range. We show that COSI can accurately reproduce not only the irradiance from the entire solar disk, but also the measured CLV. It hence can be used as a reliable tool for modeling the variability of the spectral solar irradiance.



rate research

Read More

The Large Yield Radiometer (LYRA) is a radiometer that has monitored the solar irradiance at high cadence and in four pass bands since January 2010. Both the instrument and its space- craft, PROBA2 (Project for On-Board Autonomy), have several innovative features for space instrumentation, which makes the data reduction necessary to retrieve the long term variations of solar irradiance more complex than for a fully optimized solar physics mission. In this paper, we describe how we compute the long term time series of the two extreme ultraviolet irradiance channels of LYRA, and compare the results with SDO/EVE. We find that the solar EUV irradi- ance has increased by a factor 2 since the last solar minimum (between solar cycles 23 and 24), which agrees reasonably well with the EVE observations.
Solar analogs, broadly defined as stars similar to the Sun in mass or spectral type, provide a useful laboratory for exploring the range of Sun-like behaviors and exploring the physical mechanisms underlying some of the Suns most elusive processes like coronal heating and the dynamo. We describe a series of heliophysics-motivated, but astrophysics-like studies of solar analogs. We argue for a range of stellar observations, including (a) the identification and fundamental parameter determination of new solar analogs, and (b) characterizing emergent properties like activity, magnetism, and granulation. These parameters should be considered in the framework of statistical studies of the dependences of these observables on fundamental stellar parameters like mass, metallicity, and rotation.
One of the important open questions in solar irradiance studies is whether long-term variability (i.e. on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e. days) using solar proxies as inputs. Preminger and Walton (2005, GRL, 32, 14109) showed that the relationship between spectral solar irradiance and proxies of magnetic-flux emergence, such as the daily sunspot area, can be described in the framework of linear system theory by means of the impulse response. We significantly refine that empirical model by removing spurious solar-rotational effects and by including an additional term that captures long-term variations. Our results show that long-term variability cannot be reconstructed from the short-term response of the spectral irradiance, which cautions the extension of solar proxy models to these timescales. In addition, we find that the solar response is nonlinear in such a way that cannot be corrected simply by applying a rescaling to sunspot area.
Understanding how energy is released in flares is one of the central problems of solar and stellar astrophysics. Observations of high temperature flare plasma hold many potential clues as to the nature of this energy release. It is clear, however, that flares are not composed of a few impulsively heated loops, but are the result of heating on many small-scale threads that are energized over time, making it difficult to compare observations and numerical simulations in detail. Several previous studies have shown that it is possible to reproduce some aspects of the observed emission by considering the flare as a sequence of independently heated loops, but these studies generally focus on small-scale features while ignoring the global features of the flare. In this paper, we develop a multithreaded model that encompasses the time-varying geometry and heating rate for a series of successively-heated loops comprising an arcade. To validate, we compare with spectral observations of five flares made with the MinXSS CubeSat as well as light curves measured with GOES/XRS and SDO/AIA. We show that this model can successfully reproduce the light curves and quasi-periodic pulsations in GOES/XRS, the soft X-ray spectra seen with MinXSS, and the light curves in various AIA passbands. The AIA light curves are most consistent with long duration heating, but elemental abundances cannot be constrained with the model. Finally, we show how this model can be used to extrapolate to spectra of extreme events that can predict irradiance across a wide wavelength range including unobserved wavelengths.
Context. There is no consensus on the amplitude of the historical solar forcing. The estimated magnitude of the total solar irradiance difference between Maunder minimum and present time ranges from 0.1 to 6 W/m2 making uncertain the simulation of the past and future climate. One reason for this disagreement is the applied evolution of the quiet Sun brightness in the solar irradiance reconstruction models. This work addresses the role of the quiet Sun model choice and updated solar magnetic activity proxies on the solar forcing reconstruction. Aims. We aim to establish a plausible range of the solar irradiance variability on decadal to millennial time scales. Methods. The spectral solar irradiance (SSI) is calculated as a weighted sum of the contributions from sunspot umbra/penumbra, fac- ulae and quiet Sun, which are pre-calculated with the spectral synthesis code NESSY. We introduce activity belts of the contributions from sunspots and faculae and a new structure model for the quietest state of the Sun. We assume that the brightness of the quiet Sun varies in time proportionally to the secular (22-year smoothed) variation of the solar modulation potential. Results. A new reconstruction of the TSI and SSI covering the period 6000 BCE - 2015 CE is presented. The model simulates solar irradiance variability during the satellite era well. The TSI change between the Maunder and recent minima ranges between 3.7 and 4.5 W/m2 depending on the applied solar modulation potential. The implementation of a new quietest Sun model reduces, by approximately a factor of two, the relative solar forcing compared to the largest previous estimation, while the application of updated solar modulation potential increases the forcing difference between Maunder minimum and the present by 25-40 %.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا