Do you want to publish a course? Click here

Asymptotic properties of the spectrum of neutral delay differential equations

131   0   0.0 ( 0 )
 Added by Konstantin Blyuss
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spectral properties and transition to instability in neutral delay differential equations are investigated in the limit of large delay. An approximation of the upper boundary of stability is found and compared to an analytically derived exact stability boundary. The approximate and exact stability borders agree quite well for the large time delay, and the inclusion of a time-delayed velocity feedback improves this agreement for small delays. Theoretical results are complemented by a numerically computed spectrum of the corresponding characteristic equations.



rate research

Read More

187 - V. Flunkert , E. Schoell 2009
pydelay is a python library which translates a system of delay differential equations into C-code and simulates the code using scipy weave.
82 - Sean Kramer , Eric Bollt 2012
Given multiple images that describe chaotic reaction-diffusion dynamics, parameters of a PDE model are estimated using autosynchronization, where parameters are controlled by synchronization of the model to the observed data. A two-component system of predator-prey reaction-diffusion PDEs is used with spatially dependent parameters to benchmark the methods described. Applications to modelling the ecological habitat of marine plankton blooms by nonlinear data assimilation through remote sensing is discussed.
We present some distinct asymptotic properties of solutions to Caputo fractional differential equations (FDEs). First, we show that the non-trivial solutions to a FDE can not converge to the fixed points faster than $t^{-alpha}$, where $alpha$ is the order of the FDE. Then, we introduce the notion of Mittag-Leffler stability which is suitable for systems of fractional-order. Next, we use this notion to describe the asymptotical behavior of solutions to FDEs by two approaches: Lyapunovs first method and Lyapunovs second method. Finally, we give a discussion on the relation between Lipschitz condition, stability and speed of decay, separation of trajectories to scalar FDEs.
This paper studies the convergence of the tamed Euler-Maruyama (EM) scheme for a class of McKean-Vlasov neutral stochastic differential delay equations (MV-NSDDEs) that the drift coefficients satisfy the super-linear growth condition. We provide the existence and uniqueness of strong solutions to MV-NSDDEs. Then, we use a stochastic particle method, which is based upon the theory of the propagation of chaos between particle system and the original MV-NSDDE, to deal with the approximation of the law. Moreover, we obtain the convergence rate of tamed EM scheme with respect to the corresponding particle system. Combining the result of propagation of chaos and the convergence rate of the numerical solution to the particle system, we get a convergence error between the numerical solution and exact solution of the original MV-NSDDE in the stepsize and number of particles.
68 - Qunxi Zhu , Yao Guo , Wei Lin 2021
Neural Ordinary Differential Equations (NODEs), a framework of continuous-depth neural networks, have been widely applied, showing exceptional efficacy in coping with some representative datasets. Recently, an augmented framework has been successfully developed for conquering some limitations emergent in application of the original framework. Here we propose a new class of continuous-depth neural networks with delay, named as Neural Delay Differential Equations (NDDEs), and, for computing the corresponding gradients, we use the adjoint sensitivity method to obtain the delayed dynamics of the adjoint. Since the differential equations with delays are usually seen as dynamical systems of infinite dimension possessing more fruitful dynamics, the NDDEs, compared to the NODEs, own a stronger capacity of nonlinear representations. Indeed, we analytically validate that the NDDEs are of universal approximators, and further articulate an extension of the NDDEs, where the initial function of the NDDEs is supposed to satisfy ODEs. More importantly, we use several illustrative examples to demonstrate the outstanding capacities of the NDDEs and the NDDEs with ODEs initial value. Specifically, (1) we successfully model the delayed dynamics where the trajectories in the lower-dimensional phase space could be mutually intersected, while the traditional NODEs without any argumentation are not directly applicable for such modeling, and (2) we achieve lower loss and higher accuracy not only for the data produced synthetically by complex models but also for the real-world image datasets, i.e., CIFAR10, MNIST, and SVHN. Our results on the NDDEs reveal that appropriately articulating the elements of dynamical systems into the network design is truly beneficial to promoting the network performance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا