Do you want to publish a course? Click here

Covariant statistical mechanics and the stress-energy tensor

391   0   0.0 ( 0 )
 Added by Francesco Becattini
 Publication date 2012
  fields Physics
and research's language is English
 Authors F. Becattini




Ask ChatGPT about the research

After recapitulating the covariant formalism of equilibrium statistical mechanics in special relativity and extending it to the case of a non-vanishing spin tensor, we show that the relativistic stress-energy tensor at thermodynamical equilibrium can be obtained from a functional derivative of the partition function with respect to the inverse temperature four-vector beta. For usual thermodynamical equilibrium, the stress-energy tensor turns out to be the derivative of the relativistic thermodynamic potential current with respect to the four-vector beta, i.e. T^{mu u} = - partial Phi^mu/partial beta_ u. This formula establishes a relation between stress-energy tensor and entropy current at equilibrium possibly extendable to non-equilibrium hydrodynamics.



rate research

Read More

We show a direct connection between Kubos fluctuation-dissipation relation and Hawking effect that is valid in any dimensions for any stationary or static black hole. The relevant correlators corresponding to the fluctuating part of the force, computed from the known expressions for the anomalous stress tensor related to gravitational anomalies, are shown to satisfy the Kubo relation, from which the temperature of a black hole as seen by an observer at an arbitrary distance is abstracted. This reproduces the Tolman temperature and hence the Hawking temperature as that measured by an observer at infinity.
153 - Tomislav Prokopec 2008
We calculate the expectation value of the coincident product of two field strength tensors at two loop order in scalar electrodynamics on de Sitter background. The result agrees with the stochastic formulation which we have developed in a companion paper [2] for the nonperturbative resummation of leading logarithms of the scale factor. When combined with a previous computation of scalar bilinears [1], our current result also gives the two loop stress-energy tensor for inflationary scalar electrodynamics. This shows a secular decrease in the vacuum energy which derives from the vacuum polarization induced by the inflationary production of charged scalars.
Among the different methods to derive particle creation, finding the quantum stress tensor expectation value gives a covariant quantity which can be used for examining the back-reaction issue. However this tensor also includes vacuum polarization in a way that depends on the vacuum chosen. Here we review different aspects of particle creation by looking at energy conservation and at the quantum stress tensor. It will be shown that in the case of general spherically symmetric black holes that have a emph{dynamical horizon}, as occurs in a cosmological context, one cannot have pair creation on the horizon because this violates energy conservation. This confirms the results obtained in other ways in a previous paper [25]. Looking at the expectation value of the quantum stress tensor with three different definitions of the vacuum state, we study the nature of particle creation and vacuum polarization in black hole and cosmological models, and the associated stress energy tensors. We show that the thermal temperature that is calculated from the particle flux given by the quantum stress tensor is compatible with the temperature determined by the affine null parameter approach. Finally, it will be shown that in the spherically symmetric dynamic case, we can neglect the backscattering term and only consider the s-waves term near the future apparent horizon.
We give a statistical-mechanical theory of stress transmission in disordered arrays of rigid grains with perfect friction. Starting from the equations of microscopic force and torque balance we derive the fundamental equations of stress equilibrium. We illustrate the validity of our approach by solving the stress distribution of a homogeneous and isotropic array.
We establish a one-to-one mapping between entanglement entropy, energy, and temperature (quantum entanglement mechanics) with black hole entropy, Komar energy, and Hawking temperature, respectively. We show this explicitly for 4-D spherically symmetric asymptotically flat and non-flat space-times with single and multiple horizons. We exploit an inherent scaling symmetry of entanglement entropy and identify scaling transformations that generate an infinite number of systems with the same entanglement entropy, distinguished only by their respective energies and temperatures. We show that this scaling symmetry is present in most well-known systems starting from the two-coupled harmonic oscillator to quantum scalar fields in spherically symmetric space-time. The scaling symmetry allows us to identify the cause of divergence of entanglement entropy to the generation of (near) zero-modes in the systems. We systematically isolate the zero-mode contributions using suitable boundary conditions. We show that the entanglement entropy and energy of quantum scalar field scale differently in space-times with horizons and flat space-time. The relation $E=2TS$, in analogy with the horizons thermodynamic structure, is also found to be universally satisfied in the entanglement picture. We then show that there exists a one-to-one correspondence leading to the Smarr-formula of black hole thermodynamics for asymptotically flat and non-flat space-times.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا