No Arabic abstract
The cosmological constant problem is the principal obstacle in the attempt to interpret dark energy as the quantum vacuum energy. We suggest that the obstacle can be removed, i.e. that the cosmological constant problem can be resolved by assuming that the virtual particles and antiparticles in the quantum vacuum have the gravitational charge of the opposite sign. The corresponding estimates of the cosmological constant, dark energy density and the equation of state for dark energy are in the intriguing agreement with the observed values in the present day Universe. However, our approach and the Standard Cosmology lead to very different predictions for the future of the Universe; the exponential growth of the scale factor, predicted by the Standard Cosmology, is suppressed in our model.
Before the end of this decade, three competing experiments (ALPHA, AEGIS and GBAR) will discover if atoms of antihydrogen fall up or down. We wonder what the major changes in astrophysics and cosmology would be if it is experimentally confirmed that antimatter falls upwards. The key point is: If antiparticles have negative gravitational charge, the quantum vacuum, well established in the Standard Model of Particles and Fields, contains virtual gravitational dipoles. The main conclusions are: (1) the physical vacuum enriched with gravitational dipoles is compatible with a cyclic universe alternatively dominated by matter and antimatter, without initial singularity and without need for cosmic inflation; (2) the virtual dipoles might explain the phenomena usually attributed to dark matter and dark energy. While what we have presented is still far from a complete theory, hopefully it can stimulate a radically different and potentially important way of thinking.
The Dark Energy problem is forcing us to re-examine our models and our understanding of relativity and space-time. Here a novel idea of Fundamental Forces is introduced. This allows us to perceive the General Theory of Relativity and Einsteins Equati
In this review we present a theory of cosmological constant and Dark Energy (DE), based on the topological structure of the vacuum. The Multiple Point Principle (MPP) is reviewed. It demonstrates the existence of the two vacua into the SM. The Froggatt-Nielsens prediction of the top-quark and Higgs masses is given in the assumption that there exist two degenerate vacua in the SM. This prediction was improved by the next order calculations. We also considered B.G. Sidharths theory of cosmological constant based on the non-commutative geometry of the Planck scale space-time, what gives an extremely small DE density providing the accelerating expansion of the Universe. Theory of two degenerate vacua - the Planck scale phase and Electroweak (EW) phase - also is reviewed, topological defects in these vacua are investigated, also the Compton wavelength phase suggested by B.G. Sidharth was discussed. A general theory of the phase transition and the problem of the vacuum stability in the SM is reviewed. Assuming that the recently discovered at the LHC new resonance with mass $m_S simeq 750$ GeV is a new scalar $S$ bound state $6t + 6bar t$, earlier predicted by C.D. Froggatt, H.B. Nielsen and L.V. Laperashvili, we try to provide the vacuum stability in the SM and exact accuracy of the MPP.
The synthesis of quantum and gravitational physics is sought through a finite, realistic, locally causal theory where gravity plays a vital role not only during decoherent measurement but also during non-decoherent unitary evolution. Invariant set theory is built on geometric properties of a compact fractal-like subset $I_U$ of cosmological state space on which the universe is assumed to evolve and from which the laws of physics are assumed to derive. Consistent with the primacy of $I_U$, a non-Euclidean (and hence non-classical) state-space metric $g_p$ is defined, related to the $p$-adic metric of number theory where $p$ is a large but finite Pythagorean prime. Uncertain states on $I_U$ are described using complex Hilbert states, but only if their squared amplitudes are rational and corresponding complex phase angles are rational multiples of $2 pi$. Such Hilbert states are necessarily $g_p$-distant from states with either irrational squared amplitudes or irrational phase angles. The gappy fractal nature of $I_U$ accounts for quantum complementarity and is characterised numerically by a generic number-theoretic incommensurateness between rational angles and rational cosines of angles. The Bell inequality, whose violation would be inconsistent with local realism, is shown to be $g_p$-distant from all forms of the inequality that are violated in any finite-precision experiment. The delayed-choice paradox is resolved through the computational irreducibility of $I_U$. The Schrodinger and Dirac equations describe evolution on $I_U$ in the singular limit at $p=infty$. By contrast, an extension of the Einstein field equations on $I_U$ is proposed which reduces smoothly to general relativity as $p rightarrow infty$. Novel proposals for the dark universe and the elimination of classical space-time singularities are given and experimental implications outlined.
Recently, the gravitational polarization of the quantum vacuum was proposed as alternative to the dark matter paradigm. In the present paper we consider four benchmark measurements: the universality of the central surface density of galaxy dark matter haloes, the cored dark matter haloes in dwarf spheroidal galaxies, the non-existence of dark disks in spiral galaxies and distribution of dark matter after collision of clusters of galaxies (the Bullet cluster is a famous example). Only some of these phenomena (but not all of them) can (in principle) be explained by the dark matter and the theories of modified gravity. However, we argue that the framework of the gravitational polarization of the quantum vacuum allows the understanding of the totality of these phenomena.