Do you want to publish a course? Click here

Antihydrogen and mirror-trapped antiproton discrimination: Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap

110   0   0.0 ( 0 )
 Added by Joel Fajans
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antiproton and antihydrogen trajectories in this magnetic geometry, and reconstruct the antihydrogen energy distribution from the measured annihilation time history.



rate research

Read More

Antihydrogen atoms are confined in an Ioffe trap for 15 to 1000 seconds -- long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons and positrons interact, 5 +/- 1 simultaneously-confined ground state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped antithydrogen atoms are critical if laser-cooling of trapped antihydrogen is to be demonstrated, and spectroscopic studies at interesting levels of precision are to be carried out.
352 - P. H. Donnan 2012
We present a scheme for laser cooling applicable for an extremely dilute sample of magnetically trapped antihydrogen atoms($bar{H}$). Exploiting and controlling the dynamical coupling between the $bar{H}$s motional degrees of freedom in a magnetic trap, three-dimensional cooling can be achieved from Doppler cooling on one dimension using the $1s_{1/2}-2p_{3/2}$ transition. The lack of three-dimensional access to the trapped $bar{H}$ and the nearly separable nature of the trapping potential leads to difficulties in cooling. Using realistic models for the spatial variation of the magnetic fields, we find that it should be possible to cool the $bar{H}$s to $sim 20$ mK even with these constraints.
ALPHA is an international project that has recently begun experimentation at CERNs Antiproton Decelerator (AD) facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms with the ultimate goal of precise spectroscopic comparisons with hydrogen. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.
The antihydrogen formation by charge exchange between cold antiprotons and Rydberg positronium Ps is studied by using the Classical Trajectory Monte Carlo (CTMC) method.
Production of antihydrogen atoms by mixing antiprotons with a cold, confined, positron plasma depends critically on parameters such as the plasma density and temperature. We discuss non-destructive measurements, based on a novel, real-time analysis of excited, low-order plasma modes, that provide comprehensive characterization of the positron plasma in the ATHENA antihydrogen apparatus. The plasma length, radius, density, and total particle number are obtained. Measurement and control of plasma temperature variations, and the application to antihydrogen production experiments are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا