Do you want to publish a course? Click here

Radiation Transfer in the Cavity and Shell of Planetary Nebulae

235   0   0.0 ( 0 )
 Added by Mikako Matsuura
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop an approximate analytical solution for the transfer of line-averaged radiation in the hydrogen recombination lines for the ionized cavity and molecular shell of a spherically symmetric planetary nebula. The scattering problem is treated as a perturbation, using a mean intensity derived from a scattering-free solution. The analytical function was fitted to Halpha and Hbeta data from the planetary nebula NGC6537. The position of the maximum in the intensity profile produced consistent values for the radius of the cavity as a fraction of the radius of the dusty nebula: 0.21 for Halpha and 0.20 for Hbeta. Recovered optical depths were broadly consistent with observed optical extinction in the nebula, but the range of fit parameters in this case is evidence for a clumpy distribution of dust.



rate research

Read More

Imaging and spectroscopic observations of planetary nebulae (PNe) in the nearest large elliptical galaxy NGC 5128 (Centaurus A), were obtained to find more PNe and measure their radial velocities. NTT imaging was obtained in 15 fields in NGC 5128 over an area of about 1 square degree with EMMI using [O III] and off-band filters. Newly detected sources, combined with literature PNe, were used as input for VLT FLAMES multi-fibre spectroscopy in MEDUSA mode. Spectra of the 4600-5100A region were analysed and velocities measured based on emission lines of [O III]4959,5007A and often H-beta. The chief results are catalogues of 1118 PN candidates and 1267 spectroscopically confirmed PNe in NGC 5128. The catalogue of PN candidates contains 1060 PNe discovered with EMMI imaging and 58 from literature surveys. The spectroscopic PN catalogue has FLAMES radial velocity and emission line measurements for 1135 PNe, of which 486 are new. Another 132 PN radial velocities are available from the literature. For 629 PNe observed with FLAMES, H-beta was measured in addition to [O III]. Nine targets show double-lined or more complex profiles, and their possible origin is discussed. FLAMES spectra of 48 globular clusters were also targetted: 11 had emission lines detected (two with multiple components), but only 3 are PNe likely to belong to the host globular. The total of 1267 confirmed PNe in NGC 5128 with radial velocity measurements (1135 with small velocity errors) is the largest collection of individual kinematic probes in an early-type galaxy. This PN dataset, as well as the catalogue of PN candidates, are valuable resources for detailed investigation of the stellar population of NGC 5128. [Abridged]
Near-infrared imaging in the 1 - 0 S(1) emission line of molecular hydrogen is able to detect planetary nebulae (PNe) that are hidden from optical emission line surveys. We present images of 307 objects from the UWISH2 survey of the northern Galactic Plane, and with the aid of mid-infrared colour diagnostics draw up a list of 291 PN candidates. The majority, 183, are new detections and 85 per cent of these are not present in H$alpha$ surveys of the region. We find that more than half (54 per cent) of objects have a bipolar morphology and that some objects previously considered as elliptical or point-source in H$alpha$ imaging, appear bipolar in UWISH2 images. By considering a small subset of objects for which physical radii are available from the H$alpha$ surface brightness-radius relation, we find evidence that the H2 surface brightness remains roughly constant over a factor 20 range of radii from 0.03 to 0.6 pc, encompassing most of the visible lifetime of a PN. This leads to the H$alpha$ surface brightness becoming comparable to that of H2 at large radius (> 0:5 pc). By combining the number of UWISH2 PNe without H$alpha$ detection with an estimate of the PN detection efficiency in H2 emission, we estimate that PN numbers from H$alpha$ surveys may underestimate the true PN number by a factor between 1.5 and 2.5 within the UWISH2 survey area.
This study investigate the effectiveness of using Deep Learning (DL) for the classification of planetary nebulae (PNe). It focusses on distinguishing PNe from other types of objects, as well as their morphological classification. We adopted the deep transfer learning approach using three ImageNet pre-trained algorithms. This study was conducted using images from the Hong Kong/Australian Astronomical Observatory/Strasbourg Observatory H-alpha Planetary Nebula research platform database (HASH DB) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS). We found that the algorithm has high success in distinguishing True PNe from other types of objects even without any parameter tuning. The Matthews correlation coefficient is 0.9. Our analysis shows that DenseNet201 is the most effective DL algorithm. For the morphological classification, we found for three classes, Bipolar, Elliptical and Round, half of objects are correctly classified. Further improvement may require more data and/or training. We discuss the trade-offs and potential avenues for future work and conclude that deep transfer learning can be utilized to classify wide-field astronomical images.
The age-velocity dispersion relation is an important tool to understand the evolution of the disc of the Andromeda galaxy (M31) in comparison with the Milky Way. We use Planetary Nebulae (PNe) to obtain the age-velocity dispersion relation in different radial bins of the M31 disc. We separate the observed PNe sample based on their extinction values into two distinct age populations. The observed velocities of our high- and low-extinction PNe, which correspond to higher and lower mass progenitors respectively, are fitted in de-projected elliptical bins to obtain their rotational velocities, $V_{phi}$, and corresponding dispersions, $rmsigma_{phi}$. We assign ages to the two PNe populations by comparing central-star properties of an archival sub-sample of PNe, having models fitted to their observed spectral features, to stellar evolution tracks. For the high- and low-extinction PNe, we find ages of $sim2.5$ Gyr and $sim4.5$ Gyr respectively, with distinct kinematics beyond a deprojected radius R$rm_{GC}= 14$ kpc. At R$rm_{GC}$=17--20 kpc, which is the equivalent distance in disc scale lengths of the Sun in the Milky Way disc, we obtain $rmsigma_{phi,~2.5~Gyr}= 61pm 14$ km s$^{-1}$ and $rmsigma_{phi,~4.5~Gyr}= 101pm 13$ km s$^{-1}$. The age-velocity dispersion relation for the M31 disc is obtained in two radial bins, R$rm_{GC}$=14--17 and 17--20 kpc. The high- and low-extinction PNe are associated with the young thin and old thicker disc of M31 respectively, whose velocity dispersion values increase with age. These values are almost twice and thrice that of the Milky Way disc stellar population of corresponding ages. From comparison with simulations of merging galaxies, we find that the age-velocity dispersion relation in the M31 disc measured using PNe is indicative of a single major merger that occurred 2.5 -- 4.5 Gyr ago with an estimated merger mass ratio $approx$ 1:5.
157 - Christophe Morisset 2016
The understanding of astronomical nebulae is based on observational data (images, spectra, 3D data-cubes) and theoretical models. In this review, I present my very biased view on photoionization modeling of planetary nebulae, focusing on 1D multi-component models, on 3D models and on big database of models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا