No Arabic abstract
Near-infrared imaging in the 1 - 0 S(1) emission line of molecular hydrogen is able to detect planetary nebulae (PNe) that are hidden from optical emission line surveys. We present images of 307 objects from the UWISH2 survey of the northern Galactic Plane, and with the aid of mid-infrared colour diagnostics draw up a list of 291 PN candidates. The majority, 183, are new detections and 85 per cent of these are not present in H$alpha$ surveys of the region. We find that more than half (54 per cent) of objects have a bipolar morphology and that some objects previously considered as elliptical or point-source in H$alpha$ imaging, appear bipolar in UWISH2 images. By considering a small subset of objects for which physical radii are available from the H$alpha$ surface brightness-radius relation, we find evidence that the H2 surface brightness remains roughly constant over a factor 20 range of radii from 0.03 to 0.6 pc, encompassing most of the visible lifetime of a PN. This leads to the H$alpha$ surface brightness becoming comparable to that of H2 at large radius (> 0:5 pc). By combining the number of UWISH2 PNe without H$alpha$ detection with an estimate of the PN detection efficiency in H2 emission, we estimate that PN numbers from H$alpha$ surveys may underestimate the true PN number by a factor between 1.5 and 2.5 within the UWISH2 survey area.
We report the results of a survey of 442 planetary nebulae at 30 GHz. The purpose of the survey is to develop a list of planetary nebulae as calibration sources which could be used for high frequency calibration in future. For 41 PNe with sufficient data, we test the emission mechanisms in order to evaluate whether or not spinning dust plays an important role in their spectra at 30 GHz. The 30-GHz data were obtained with a twin-beam differencing radiometer, OCRA-p, which is in operation on the Torun 32-m telescope. Sources were scanned both in right ascension and declination. We estimated flux densities at 30 GHz using a free-free emission model and compared it with our data. The primary result is a catalogue containing the flux densities of 93 planetary nebulae at 30 GHz. Sources with sufficient data were compared with a spectral model of free-free emission. The model shows that free-free emission can generally explain the observed flux densities at 30 GHz thus no other emission mechanism is needed to account for the high frequency spectra.
The occurrence of planetary nebulae (PNe) in globular clusters (GCs) provides an excellent chance to study low-mass stellar evolution in a special (low-metallicity, high stellar density) environment. We report a systematic spectroscopic survey for the [O{sc iii}] 5007 emission line of PNe in 1469 Virgo GCs and 121 Virgo ultra-compact dwarfs (UCDs), mainly hosted in the giant elliptical galaxies M87, M49, M86, and M84. We detected zero PNe in our UCD sample and discovered one PN ($M_{5007} = -4.1$ mag) associated with an M87 GC. We used the [O{sc iii}] detection limit for each GC to estimate the luminosity-specific frequency of PNe, $alpha$, and measured $alpha$ in the Virgo cluster GCs to be $alpha sim 3.9_{-0.7}^{+5.2}times 10^{-8}mathrm{PN}/L_odot$. $alpha$ in Virgo GCs is among the lowest values reported in any environment, due in part to the large sample size, and is 5--6 times lower than that for the Galactic GCs. We suggest that $alpha$ decreases towards brighter and more massive clusters, sharing a similar trend as the binary fraction, and the discrepancy between the Virgo and Galactic GCs can be explained by the observational bias in extragalactic surveys toward brighter GCs. This low but non-zero efficiency in forming PNe may highlight the important role played by binary interactions in forming PNe in GCs. We argue that a future survey of less massive Virgo GCs will be able to determine whether PN production in Virgo GCs is governed by internal process (mass, density, binary fraction), or is largely regulated by external environment.
We report H$alpha$ filter photometry for 197 northern hemisphere planetary nebulae (PNe) obtained using imaging data from the IPHAS survey. H$alpha$+[N II] fluxes were measured for 46 confirmed or possible PNe discovered by the IPHAS survey and for 151 previously catalogued PNe that fell within the area of the northern Galactic Plane surveyed by IPHAS. After correcting for [N II] emission admitted by the IPHAS H$alpha$ filter, the resulting H$alpha$ fluxes were combined with published radio free-free fluxes and H$beta$ fluxes, in order to estimate mean optical extinctions to 143 PNe using ratios involving their integrated Balmer line fluxes and their extinction-free radio fluxes. Distances to the PNe were then estimated using three different 3D interstellar dust extinction mapping methods, including the IPHAS-based H-MEAD algorithm of Sale (2014). These methods were used to plot dust extinction versus distance relationships for the lines of sight to the PNe; the intercepts with the derived dust optical extinctions allowed distances to the PNe to be inferred. For 17 of the PNe in our sample reliable Gaia DR2 distances were available and these have been compared with the distances derived using three different extinction mapping algorithms as well as with distances from the nebular radius vs. H$alpha$ surface brightness relation of Frew et al. (2016). That relation and the H-MEAD extinction mapping algorithm yielded the closest agreement with the Gaia DR2 distances.
We construct HI~absorption spectra for 18 planetary nebulae (PNe) and their background sources using the data from the International Galactic Plane Survey. We estimate the kinematic distances of these PNe, among which 15 objects kinematic distances are obtained for the first time. The distance uncertainties of 13 PNe range from 10% to 50%, which is a significant improvement with uncertainties of a factor two or three smaller than most of previous distance measurements. We confirm that PN G030.2-00.1 is not a PN because of its large distance found here.
We present near-infrared (IR) spectra of two planetary nebula (PN) candidates in close lines of sight toward the Galactic center (GC) using the Gemini Near-Infrared Spectrograph (GNIRS) at Gemini North. High-resolution images from radio continuum and narrow-band IR observations reveal ringlike or barrel-shaped morphologies of these objects, and their mid-IR spectra from the Spitzer Space Telescope exhibit rich emission lines from highly-excited species such as [S IV], [Ne III], [Ne V], and [O IV]. We also derive elemental abundances using the Cloudy synthetic models, and find an excess amount of the $s$-process element Krypton in both targets, which supports their nature as PN. We estimate foreground extinction toward each object using near-IR hydrogen recombination lines, and find significant visual extinctions ($A_V > 20$). The distances inferred from the size versus surface brightness relation of other PNe are $9.0pm1.6$ kpc and $7.6pm1.6$ kpc for SSTGC 580183 and SSTGC 588220, respectively. These observed properties along with abundance patterns and their close proximity to Sgr A$^*$ (projected distances $<20$ pc) make it highly probable that these objects are the first confirmed PN objects in the nuclear stellar disk. The apparent scarcity of such objects resembles the extremely low rate of PN formation in old stellar systems, but is in line with the current rate of the sustained star formation activity in the Central Molecular Zone.