Do you want to publish a course? Click here

Cooperative mercury motion in the ionic conductor Cu2HgI4

208   0   0.0 ( 0 )
 Added by Miroslav Pozek
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the observation of glass-like dynamic correlations of mobile mercury ions in the ionic conductor Cu2HgI4, detected in both NMR and nonlinear conductivity experiments. The results show that dynamic cooperativity appears in systems seemingly unrelated to glassy and soft arrested materials. A simple kinetic two-component model is proposed, which seems to provide a good description of the cooperative ionic dynamics.



rate research

Read More

We introduce a method to carry out zero-temperature calculations within density functional theory (DFT) but without relying on the Born-Oppenheimer (BO) approximation for the ionic motion. Our approach is based on the finite-temperature many-body path-integral formulation of quantum mechanics by taking the zero-temperature limit and treating the imaginary-time propagation of the electronic variables in the context of DFT. This goes beyond the familiar BO approximation and is limited from being an exact treatment of both electrons and ions only by the approximations involved in the DFT component. We test our method in two simple molecules, H$_2$ and benzene. We demonstrate that the method produces a difference from the results of the BO approximation which is significant for many physical systems, especially those containing light atoms such as hydrogen; in these cases, we find that the fluctuations of the distance from its equilibrium position, due to the zero-point-motion, is comparable to the interatomic distances. The method is suitable for use with conventional condensed matter approaches and currently is implemented on top of the periodic pseudopotential code SIESTA.
We present low-temperature anelastic and dielectric spectroscopy measurements on the perovskite ionic conductor BaCe(1-x)Y(x)O(3-x/2) in the protonated, deuterated and outgassed states. Three main relaxation processes are ascribed to proton migration, reorientation about an Y dopant and tunneling around a same O atom. An additional relaxation maximum appears only in the dielectric spectrum around 60 K, and does not involve H motion, but may be of electronic origin, e.g. small polaron hopping. The peak at the lowest temperature, assigned to H tunneling, has been fitted with a relaxation rate presenting crossovers from one-phonon transitions, nearly independent of temperature, to two-phonon processes, varying as T^7, to Arrhenius-like. Substituting H with D lowers the overall rate by 8 times. The corresponding peak in the dielectric loss has an intensity nearly 40 times smaller than expected from the classical reorientation of the electric dipole associated with the OH complex. This fact is discussed in terms of coherent tunneling states of H in a cubic and orthorhombically distorted lattice, possibly indicating that only H in the symmetric regions of twin boundaries exhibit tunneling, and in terms of reduction of the effective dipole due to lattice polarization.
Cooperative adsorption of gases by porous frameworks permits more efficient uptake and removal than does the more usual non-cooperative (Langmuir-type) adsorption. Cooperativity, signaled by a step-like isotherm, is usually attributed to a phase transition of the framework. However, the class of metal-organic frameworks mmen-M$_2$(dobpdc) exhibit cooperative adsorption of CO2 but show no evidence of a phase transition. Here we show how cooperativity emerges in these frameworks in the absence of a phase transition. We use a combination of quantum and statistical mechanics to show that cooperativity results from a sharp but finite increase, with pressure, of the mean length of chains of CO2 molecules that polymerize within the framework. Our study provides microscopic understanding of the emergent features of cooperative binding, including the position, slope and height of the isotherm step, and indicates how to optimize gas storage and separation in these materials.
Diamine-appended metal{organic frameworks (MOFs) of the form Mg2(dobpdc)(diamine)2 adsorb CO2 in a cooperative fashion, exhibiting an abrupt change in CO2 occupancy with pressure or temperature. This change is accompanied by hysteresis. While hysteresis is suggestive of a firstorder phase transition, we show that hysteretic temperature-occupancy curves associated with this material are qualitatively unlike the curves seen in the presence of a phase transition; they are instead consistent with CO2 chain polymerization, within one-dimensional channels in the MOF, in the absence of a phase transition. Our simulations of a microscopic model reproduce this dynamics, and point the way toward rational control, in and out of equilibrium, of cooperative adsorption in this industrially important class of materials.
We consider an alternative to the usual spin glass paradigm for disordered magnetism, consisting of the previously unstudied combination of frustrated magnetic interactions and pseudo-dipolar disorder in spin positions. We argue that this model represents a general limiting case for real systems as well as a realistic model for certain binary fluorides and oxides. Furthermore, it is of great relevance to the highly topical subjects of the Coulomb phase and `charge ice. We derive an analytical solution for the ground state phase diagram of a model system constructed in this paradigm and identify magnetic phases that remain either disordered or partially ordered even at zero temperature. These phases are of a hitherto unobserved type, but may be broadly classified as either `spin liquids or `semi-spin liquids in contrast to the usual spin glass or semi-spin glass. Numerical simulations are used to show that the spin liquid phase exhibits no spin glass transition at finite temperature, despite the combination of frustration and disorder. By mapping onto a model of uncoupled loops of Ising spins, we show that the magnetic structure factor of this phase acts, in the limit $Trightarrow0$, as a sensitive probe of the positional disorder correlations. We suggest that this result can be generalized to more complex systems, including experimental realizations of canonical spin glass models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا