Do you want to publish a course? Click here

Eccentric Ellipsoidal Red Giant Binaries in the LMC: Complete Orbital Solutions and Comments on Interaction at Periastron

96   0   0.0 ( 0 )
 Added by Christine Nicholls
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Modelling ellipsoidal variables with known distances can lead to exact determination of the masses of both components, even in the absence of eclipses. We present such modelling using light and radial velocity curves of ellipsoidal red giant binaries in the LMC, where they are also known as sequence E stars. Stars were selected as likely eccentric systems on the basis of light curve shape alone. We have confirmed their eccentric nature and obtained system parameters using the Wilson-Devinney code. Most stars in our sample exhibit unequal light maxima as well as minima, a phenomenon not observed in sequence E variables with circular orbits. We find evidence that the shape of the red giant changes throughout the orbit due to the high eccentricity and the varying influence of the companion. Brief intervals of pulsation are apparent in two of the red giants. We determine pulsation modes and comment on their placement in the period-luminosity plane. Defining the parameters of these systems paves the way for modelling to determine by what mechanism eccentricity is maintained in evolved binaries.



rate research

Read More

A number of binary systems present evidence of enhanced activity around periastron passage, suggesting a connection between tidal interactions and these periastron effects. The aim of this investigation is to study the time-dependent response of a stars surface as it is perturbed by a binary companion. We derive expressions for the rate of dissipation, $dot{E}$, of the kinetic energy by the viscous flows driven by tidal interactions on the surface layer. The method is tested by comparing the results from a grid of model calculations with the analytical predictions of Hut (1981) and the synchronization timescales of Zahn (1977, 2008). Our results for the orbital cycle averaged energy dissipation on orbital separation are consistent with those of Hut for model binaries with orbital separations at periastron >8 stellar radii. The model also reproduces the predicted pseudo-synchronization angular velocity for moderate eccentricities and the same scaling of synchronization timescales for circular orbits with separation as given by Zahn. The computations gives the distribution of $dot{E}$ over the stellar surface, and show that it is generally concentrated at the equatorial latitude, with maxima generally located around four clearly defined longitudes, corresponding to the fastest azimuthal velocity perturbations. Maximum amplitudes occur around periastron passage or slightly thereafter for supersynchronously rotating stars. In very eccentric binaries, the distribution of $dot{E}$ over the surface changes significantly as a function of orbital phase, with small spatial structures appearing after periastron. An exploratory calculation for the highly eccentric binary system delta Sco suggests that the sudden and large amplitude variations in surface properties around periastron may contribute toward the activity observed around this orbital phase.
172 - J. D. Nie , P. R. Wood 2015
Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.
157 - P. G. Beck , K. Hambleton , J. Vos 2014
The unparalleled photometric data obtained by NASAs Kepler Space Telescope has led to improved understanding of red-giant stars and binary stars. We discuss the characterization of known eccentric system, containing a solar-like oscillating red-giant primary component. We also report several new binary systems that are candidates for hosting an oscillating companion. A powerful approach to study binary stars is to combine asteroseimic techniques with light curve fitting. Seismology allows us to deduce the properties of red giants. In addition, by modeling the ellipsoidal modulations we can constrain the parameters of the binary system. An valuable independent source are ground-bases, high-resolution spectrographs.
275 - Niharika Sravan 2014
Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star-white dwarf (NS-WD) binaries are important gravitational-wave (GW) sources for the next generation of space-based detectors sensitive to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic, tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries of this type. Currently, two eccentric NS-WD binaries are known in the galactic field, PSR J1141-6545 and PSR B2303+46, both of which have orbits too wide to be relevant in their current state to GW observations. However, population synthesis studies predict the existence of a significant Galactic population of such systems. Though small in most of these systems, we find that tidally induced periastron precession becomes important when tides contribute to more than 3% of the total precession rate. For these systems, accounting for tides when analyzing periastron precession rate measurements can improve estimates of the WD component mass inferred and, in some cases, will prevent us from misclassifying the object. However, such systems are rare due to rapid orbital decay. To aid the inclusion of tidal effects when using periastron precession as a mass measurement tool, we derive a function that relates the WD radius and periastron precession constant to the WD mass.
Binaries in double-lined spectroscopic systems provide a homogeneous set of stars. Differences of parameters, such as age or initial conditions, which otherwise would have strong impact on the stellar evolution, can be neglected. The observed differences are determined by the difference in stellar mass between the two components. The mass ratio can be determined with much higher accuracy than the actual stellar mass. In this work, we aim to study the eccentric binary system KIC9163796, whose two components are very close in mass and both are low-luminosity red-giant stars from four years of Kepler space photometry and high-resolution spectroscopy with Hermes. Mass and radius of the primary were determined through asteroseismology to be 1.39+/-0.06 Mo and 5.35+/-0.09 Ro, resp. From spectral disentangling the mass ratio was found to be 1.015+/-0.005 and that the secondary is ~600K hotter than the primary. Evolutionary models place both components, in the early and advanced stage of the first dredge-up event on the red-giant branch. From theoretical models of the primary, we derived the internal rotational gradient. From a grid of models, the measured difference in lithium abundance is compared with theoretical predictions. The surface rotation of the primary is determined from the Kepler light curve and resembles the orbital period within 10 days. The radial rotational gradient between the surface and core is found to be 6.9+2.0/-1.0. The agreement between the surface rotation with the seismic result indicates that the full convective envelope is rotating quasi-rigidly. The models of the lithium abundance are compatible with a rigid rotation in the radiative zone during the main sequence. Because of the many constraints offered by oscillating stars in binary systems, such objects are important test beds of stellar evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا