Do you want to publish a course? Click here

Radial Velocity Curves of Ellipsoidal Red Giant Binaries in the Large Magellanic Cloud

173   0   0.0 ( 0 )
 Added by Jundan Nie
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.



rate research

Read More

We present a theoretical investigation of multifilter (U,B,V, I and K) light and radial velocity curves of five Classical Cepheids in NGC 1866, a young massive cluster of the Large Magellanic Cloud. The best fit models accounting for the luminosity and radial velocity variations of the five selected variables, four pulsating in the fundamental mode and one in the first overtone, provide direct estimates of their intrinsic stellar parameters and individual distances. The resulting stellar properties indicate a slightly brighter Mass Luminosity relation than the canonical one, possibly due to mild overshooting and/or mass loss. As for the inferred distances, the individual values are consistent within the uncertainties. Moreover, their weighted mean value corresponds to a distance modulus of 18.56 + - 0.03 (stat) + - 0.1 (syst) mag, in agreement with several independent results in the literature.
210 - M. Marconi , R. Molinaro , G. Bono 2013
We performed a new and accurate fit of light and radial velocity curves of the Large Magellanic Cloud (LMC) Cepheid --OGLE-LMC-CEP-0227-- belonging to a detached double-lined eclipsing binary system. We computed several sets of nonlinear, convective models covering a broad range in stellar mass, effective temperature and in chemical composition. The comparison between theory and observations indicates that current theoretical framework accounts for luminosity --V and I band-- and radial velocity variations over the entire pulsation cycle. Predicted pulsation mass --M=4.14+-0.06 Mo-- and mean effective temperature --Te=6100+-50 K-- do agree with observed estimates with an accuracy better than 1 sigma. The same outcome applies, on average, to the luminosity amplitudes and to the mean radius. We find that the best fit solution requires a chemical composition that is more metal--poor than typical LMC Cepheids (Z=0.004 vs 0.008) and slightly helium enhanced (Y=0.27 vs 0.25), but the sensitivity to He abundance is quite limited. Finally, the best fit model reddening --E(V-I)=0.171+-0.015 mag-- and the true distance modulus corrected for the barycenter of the LMC --mu_{0,LMC}=18.50+-0.02+-0.10 (syst) mag--, agree quite well with similar estimates in the recent literature.
61 - Jesper Storm 2004
We present high precision and well sampled BVRIJK light curves and radial velocity curves for a sample of five Cepheids in the SMC. In addition we present radial velocity curves for three Cepheids in the LMC. The low metallicity (Fe/H ~ -0.7) SMC stars have been selected for use in a Baade-Wesselink type analysis to constrain the metallicity effect on the Cepheid Period-Luminosity relation. The stars have periods of around 15 days so they are similar to the Cepheids observed by the Extragalactic Distance Scale Key Project on the Hubble Space Telescope. We show that the stars are representative of the SMC Cepheid population at that period and thus will provide a good sample for the proposed analysis. The actual Baade-Wesselink analysis are presented in a companion paper.
We present the results of the chi2 minimization model fitting technique applied to optical and near-infrared photometric and radial velocity data for a sample of 9 fundamental and 3 first overtone classical Cepheids in the Small Magellanic Cloud (SMC). The near- infrared photometry (JK filters) was obtained by the European Southern Observatory (ESO) public survey VISTA near-infrared Y; J;Ks survey of the Magellanic Clouds system(VMC). For each pulsator isoperiodic model sequences have been computed by adopting a nonlinear convective hydrodynamical code in order to reproduce the multi- filter light and (when available) radial velocity curve amplitudes and morphological details. The inferred individual distances provide an intrinsic mean value for the SMC distance modulus of 19.01 mag and a standard deviation of 0.08 mag, in agreement with the literature. Moreover the instrinsic masses and luminosities of the best fitting model show that all these pulsators are brighter than the canonical evolutionary Mass- Luminosity relation (MLR), suggesting a significant efficiency of core overshooting and/or mass loss. Assuming that the inferred deviation from the canonical MLR is only due to mass loss, we derive the expected distribution of percentage mass loss as a function of both the pulsation period and of the canonical stellar mass. Finally, a good agreement is found between the predicted mean radii and current Period-Radius (PR) relations in the SMC available in the literature. The results of this investigation support the predictive capabilities of the adopted theoretical scenario and pave the way to the application to other extensive databases at various chemical compositions, including the VMC Large Magellanic Cloud pulsators and Galactic Cepheids with Gaia parallaxes.
The binary fraction of unevolved massive stars is thought to be 70-100% but there are few observational constraints on the binary fraction of the evolved version of a subset of these stars, the red supergiants (RSGs). Here we identify a complete sample of RSGs in the Large Magellanic Cloud (LMC) using new spectroscopic observations and archival UV, IR and broadband optical photometry. We find 4090 RSGs with log L/Lo > 3.5 with 1820 of them having log L/Lo > 4, which we believe is our completeness limit. We additionally spectroscopically confirmed 38 new RSG+B star binaries in the LMC, bringing the total known up to 55. We then estimated the binary fraction using a k-nearest neighbors algorithm that classifies stars as single or binary based on photometry with a spectroscopic sample as a training set. We take into account observational biases such as line-of-sight stars and binaries in eclipse while also calculating model-dependent corrections for RSGs with companions that our observations were not designed to detect. Based on our data, we find an initial result of 13.5 +7.56/-6.67% for RSGs with O or B-type companions. Using the Binary Population and Spectral Synthesis (BPASS) models to correct for unobserved systems, this corresponds to a total RSG binary fraction of 19.5 +7.6/-6.7%. This number is in broad agreement with what we would expect given an initial OB binary distribution of 70%, a predicted merger fraction of 20-30% and a binary interaction fraction of 40-50%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا