Do you want to publish a course? Click here

Quantum magnetic oscillations and angle-resolved photoemission from impurity bands in cuprate superconductors

154   0   0.0 ( 0 )
 Added by A. S. Alexandrov
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Present-day angle-resolved photoemission spectroscopy (ARPES) has offered a tremendous advance in the understanding of electron energy spectra in cuprate superconductors and some related compounds. However, in high magnetic field, magnetic quantum oscillations at low temperatures indicate the existence of small electron (hole) Fermi pockets seemingly missing in ARPES of hole (electron) doped cuprates. Here ARPES and quantum oscillations are reconciled in the framework of an impurity band in the charge-transfer Mott-Hubbard insulator.



rate research

Read More

Superconducting excitations -- Bogoliubov quasiparticles -- are the quantum mechanical mixture of negatively charged electron (-e) and positively charged hole (+e). We propose a new observable for Angular Resolved Photoemission Spectroscopy (ARPES) studies that is the manifestation of the particle-hole entanglement of the superconducting quasiparticles. We call this observable a {em Bogoliubov angle}. This angle measures the relative weight of particle and hole amplitude in the superconducting (Bogoliubov) quasiparticle. We show how this quantity can be measured by comparing the ratio of spectral intensities at positive and negative energies.
297 - J. Graf , M. dAstuto , C. Jozwiak 2008
We report the first measurement of the optical phonon dispersion in optimally doped single layer Bi2Sr1.6La0.4Cu2O6+delta using inelastic x-ray scattering. We found a strong softening of the Cu-O bond stretching phonon at about q=(0.25,0,0) from 76 to 60 meV, similar to the one reported in other cuprates. A direct comparison with angle-resolved photoemission spectroscopy measurements taken on the same sample, revealed an excellent agreement in terms of energy and momentum between the ARPES nodal kink and the soft part of the bond stretching phonon. Indeed, we find that the momentum space where a 63 meV kink is observed can be connected with a vector q=(xi,0,0) with xi~0.22, which corresponds exactly to the soft part of the bond stretching phonon mode. This result supports an interpretation of the ARPES kink in terms of electron-phonon coupling.
155 - T. Valla 2013
25 years after discovery of high-temperature superconductivity (HTSC) in La$_{2-x}$Ba$_x$CuO$_4$ (LBCO), the HTSC continues to pose some of the biggest challenges in materials science. Cuprates are fundamentally different from conventional superconductors in that the metallic conductivity and superconductivity are induced by doping carriers into an antiferromagnetically ordered correlated insulator. In such systems, the normal state is expected to be quite different from a Landau-Fermi liquid - the basis for the conventional BCS theory of superconductivity. The situation is additionally complicated by the fact that cuprates are susceptible to charge/spin ordering tendencies, especially in the low-doping regime. The role of such tendencies on the phenomenon of superconductivity is still not completely clear. Here, we present studies of the electronic structure in cuprates where the superconductivity is strongly suppressed as static spin and charge orders or stripes develop near the doping level of $x =1/8$ and outside of the superconducting dome, for $x<0.055$. We discuss the relationship between the stripes, superconductivity, pseudogap and the observed electronic excitations in these materials.
We carried out high resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of K_0.68Fe_1.79Se_2 (T_c=32 K) and (Tl_0.45K_0.34)Fe_1.84Se_2 (T_c=28 K) superconductors. In addition to the electron-like Fermi surface near M(pi,pi), two electron-like Fermi pockets are revealed around the zone center Gamma(0,0) in K0.68Fe1.79Se_2. This observation makes the Fermi surface topology of K_0.68Fe_1.79Se_2 consistent with that of (Tl,Rb)_xFe_{2-y}Se_2 and (Tl,K)_xFe_{2-y}Se_2 compounds. A nearly isotropic superconducting gap (Delta) is observed along the electron-like Fermi pocket near the M point in K_0.68Fe_1.79Se_2 (Deltasim 9 meV) and (Tl_0.45K_0.34)Fe_1.84Se_2 (Deltasim 8 meV). The establishment of a universal picture on the Fermi surface topology and superconducting gap in the A_xFe_2-ySe_2 (A=K, Tl, Cs, Rb and etc.) superconductors will provide important information in understanding the superconductivity mechanism of the iron-based superconductors.
High resolution angle-resolved photoemission measurements have been carried out to study the superconducting gap in the (Ba0.6K0.4)Fe2As2 superconductor with Tc=35 K. Two hole-like Fermi surface sheets around the G(0,0) point exhibit different superconducting gaps. The inner Fermi surface sheet shows larger (10-12 meV) and slightly momentum-dependent gap while the outer one has smaller (7-8 meV) and nearly isotropic gap. The lack of gap node in both Fermi surface sheets favours s-wave superconducting gap symmetry. Superconducting gap opening is also observed at the M(pi,pi) point. The two Fermi surface spots near the M point are gapped below Tc but the gap persists above Tc. The rich and detailed superconducting gap information will provide key insights and constraints in understanding pairing mechanism in the iron-based superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا