Do you want to publish a course? Click here

Catastrophic cooling and cessation of heating in the solar corona

136   0   0.0 ( 0 )
 Added by Hardi Peter
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Condensations in the more than 10^6 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the loop top resulting in the well-known catastrophic cooling. This process gives a good match to observations of coronal condensations. This shows that the corona needs a steady supply of energy to support the coronal plasma, even during coronal condensations. Otherwise the corona would drain very fast, too fast to even form a condensation.



rate research

Read More

Rapidly decaying slow magnetoacoustic waves are regularly observed in the solar coronal structures, offering a promising tool for a seismological diagnostics of the coronal plasma, including its thermodynamical properties. The effect of damping of standing slow magnetoacoustic oscillations in the solar coronal loops is investigated accounting for the field-aligned thermal conductivity and a wave-induced misbalance between radiative cooling and some unspecified heating rates. The non-adiabatic terms were allowed to be arbitrarily large, corresponding to the observed values. The thermal conductivity was taken in its classical form, and a power-law dependence of the heating function on the density and temperature was assumed. The analysis was conducted in the linear regime and in the infinite magnetic field approximation. The wave dynamics is found to be highly sensitive to the characteristic time scales of the thermal misbalance. Depending on certain values of the misbalance time scales three regimes of the wave evolution were identified, namely the regime of a suppressed damping, enhanced damping where the damping rate drops down to the observational values, and acoustic over-stability. The specific regime is determined by the dependences of the radiative cooling and heating functions on thermodynamical parameters of the plasma in the vicinity of the perturbed thermal equilibrium. The comparison of the observed and theoretically derived decay times and oscillation periods allows us to constrain the coronal heating function. For typical coronal parameters, the observed properties of standing slow magnetoacoustic oscillations could be readily reproduced with a reasonable choice of the heating function.
The solar corona consists of a million-degree Kelvin plasma. A complete understanding of this phenomenon demands the study of Quiet Sun (QS) regions. In this work, we study QS regions in the 171 {AA}, 193 {AA} and 211 {AA} passbands of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), by combining the empirical impulsive heating forward model of Pauluhn & Solanki (2007) with a machine-learning inversion model that allows uncertainty quantification. We find that there are {approx} 2--3 impulsive events per min, with a lifetime of about 10--20 min. Moreover, for all the three passbands, the distribution of power law slope {alpha} peaks above 2. Our exploration of correlations among the frequency of impulsive events and their timescales and peak energy suggests that conduction losses dominate over radiative cooling losses. All these finding suggest that impulsive heating is a viable heating mechanism in QS corona.
Magnetic reconnection, a fundamentally important process in many aspects of astrophysics, is believed to be initiated by the tearing instability of an electric current sheet, a region where magnetic field abruptly changes direction and electric currents build up. Recent studies have suggested that the amount of magnetic shear in these structures is a critical parameter for the switch-on nature of magnetic reconnection in the solar atmosphere, at fluid spatial scales much larger than kinetic scales. We present results of simulations of reconnection in 3D current sheets with conditions appropriate to the solar corona. Using high-fidelity simulations, we follow the evolution of the linear and non-linear 3D tearing instability, leading to reconnection. We find that, depending on the parameter space, magnetic shear can play a vital role in the onset of significant energy release and heating via non-linear tearing. Two regimes in our study exist, dependent on whether the current sheet is longer or shorter than the wavelength of the fastest growing parallel mode (in the corresponding infinite system), thus determining whether sub-harmonics are present in the actual system. In one regime, where the fastest growing parallel mode has sub-harmonics, the non-linear interaction of these sub-harmonics and the coalescence of 3D plasmoids dominates the non-linear evolution, with magnetic shear playing only a weak role in the amount of energy released. In the second regime, where the fastest growing parallel mode has no-sub-harmonics, then only strongly sheared current sheets, where oblique mode are strong enough to compete with the dominant parallel mode, show any significant energy release. We expect both regimes to exist on the Sun, and so our results have important consequences for the the question of reconnection onset in different solar physics applications.
A three-dimensional MHD model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) inside the kilogauss flux elements in the photosphere. The model describes the nonlinear interactions between Alfven waves using the reduced MHD approximation. The increase of Alfven speed with height in the chromosphere and transition region (TR) causes strong wave reflection, which leads to counter-propagating waves and turbulence in the photospheric and chromospheric parts of the flux tube. Part of the wave energy is transmitted through the TR and produces turbulence in the corona. We find that the hot coronal loops typically found in active regions can be explained in terms of Alfven wave turbulence, provided the small-scale footpoint motions have velocities of 1-2 km/s and time scales of 60-200 s. The heating rate per unit volume in the chromosphere is 2 to 3 orders of magnitude larger than that in the corona. We construct a series of models with different values of the model parameters, and find that the coronal heating rate increases with coronal field strength and decreases with loop length. We conclude that coronal loops and the underlying chromosphere may both be heated by Alfvenic turbulence.
Context. The radiative energy balance in the solar chromosphere is dominated by strong spectral lines that are formed out of LTE. It is computationally prohibitive to solve the full equations of radiative transfer and statistical equilibrium in 3D time dependent MHD simulations. Aims. To find simple recipes to compute the radiative energy balance in the dominant lines under solar chromospheric conditions. Methods. We use detailed calculations in time-dependent and 2D MHD snapshots to derive empirical formulae for the radiative cooling and heating. Results. The radiative cooling in neutral hydrogen lines and the Lyman continuum, the H and K and intrared triplet lines of singly ionized calcium and the h and k lines of singly ionized magnesium can be written as a product of an optically thin emission (dependent on temperature), an escape probability (dependent on column mass) and an ionization fraction (dependent on temperature). In the cool pockets of the chromosphere the same transitions contribute to the heating of the gas and similar formulae can be derived for these processes. We finally derive a simple recipe for the radiative heating of the chromosphere from incoming coronal radiation. We compare our recipes with the detailed results and comment on the accuracy and applicability of the recipes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا