Do you want to publish a course? Click here

Application of fixed scale approach to static quark free energies in quenched and 2+1 flavor lattice QCD with improved Wilson quark action

181   0   0.0 ( 0 )
 Added by Yu Maezawa
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

Free energies between static quarks and Debye screening masses in the quark-gluon plasma are studied on the basis of Polyakov-line correlations in lattice simulations of 2+1 flavors QCD with the renormalization-group improved gluon action and the $O(a)$-improved Wilson quark action. We perform simulations at $m_{rm PS}/m_{rm V} = 0.63$ (0.74) for light (strange) flavors with lattice sizes of $32^3 times N_t$ with $N_t=4$--12. We adopt the fixed-scale approach, where temperature can be varied without changing the spatial volume and renormalization factor. We find that, at short distance, the free energies of static quarks in color-singlet channel converge to the static-quark potential evaluated from the Wilson-loop at zero-temperature, in accordance with the expected insensitivity of short distance physics to the temperature. At long distance, the free energies of static quarks approach to twice the single-quark free energies, implying that the interaction between static quarks is fully screened. The screening properties can be well described by the screened Coulomb form with appropriate Casimir factor at high temperature. We also discuss a limitation of the fixed-scale approach at high temperature.



rate research

Read More

132 - T. Umeda , S. Aoki , K. Kanaya 2010
We present the status of our study on the equation of state in 2+1 flavor QCD with non-perturbatively improved Wilson quarks coupled with the RG improved glue. We apply the T-integration method to non-perturbatively calculate the equation of state by the fixed-scale approach.
446 - T. Umeda , S. Aoki , S. Ejiri 2012
We study thermodynamic properties of 2+1 flavor QCD with improved Wilson quarks coupled with the RG improved Iwasaki glue, using the fixed scale approach. We present the results for the equation of state, renormalized Polyakov loop, and chiral condensate.
172 - Y. Maezawa , S. Aoki , S. Ejiri 2009
The free energy between a static quark and an antiquark is studied by using the color-singlet Polyakov-line correlation at finite temperature. We perform simulations on $32^3 times 12$, 10, 8, 6, 4 lattices in the high temperature phase with the RG-improved gluon action and 2+1 flavors of the clover-improved Wilson quark action. Since the simulations are based on the fixed scale approach that the temperature can be varied without changing the spatial volume and renormalization factor, it is possible to investigate temperature dependence of the heavy-quark free energy without any adjustment of the overall constant. We find that, the heavy-quark free energies at short distance converge to the heavy-quark potential evaluated from the Wilson-loop operator at zero temperature, in accordance with the expected insensitivity of short distance physics to the temperature. At long distance, the heavy-quark free energies approach to twice the single-quark free energies, implying that the interaction between heavy quarks is screened. The Debye screening mass obtained from the long range behavior of the heavy-quark free energy is compared with results of the thermal perturbation theory and those of $N_f=2$ and $N_f=0$ lattice simulations.
133 - T. Umeda , S. Aoki , S. Ejiri 2012
We study the equation of state in 2+1 flavor QCD with nonperturbatively improved Wilson quarks coupled with the RG-improved Iwasaki glue. We apply the $T$-integration method to nonperturbatively calculate the equation of state by the fixed-scale approach. With the fixed-scale approach, we can purely vary the temperature on a line of constant physics without changing the system size and renormalization constants. Unlike the conventional fixed-$N_t$ approach, it is easy to keep scaling violations small at low temperature in the fixed scale approach. We study 2+1 flavor QCD at light quark mass corresponding to $m_pi/m_rho simeq 0.63$, while the strange quark mass is chosen around the physical point. Although the light quark masses are heavier than the physical values yet, our equation of state is roughly consistent with recent results with highly improved staggered quarks at large $N_t$.
170 - Y. Maezawa , S. Aoki , S. Ejiri 2009
The free energy between a static quark and an antiquark is studied by using the color-singlet Polyakov-line correlation at finite temperature in lattice QCD with 2+1 flavors of improved Wilson quarks. From the simulations on $32^3 times 12$, 10, 8, 6, 4 lattices in the high temperature phase, based on the fixed scale approach, we find that, the heavy-quark free energies at short distance converge to the heavy-quark potential evaluated from the Wilson loop at zero temperature, in accordance with the expected insensitivity of short distance physics to the temperature. At long distance, the heavy-quark free energies approach to twice the single-quark free energies, implying that the interaction between heavy quarks is screened. The Debye screening mass obtained from the long range behavior of the free energy is compared with the results of thermal perturbation theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا