No Arabic abstract
We examine the prospects for producing Nickel-56 from black hole accretion disks, by examining a range of steady state disk models. We focus on relatively slowly accreting disks in the range of 0.05 - 1 solar masses per second, as are thought to be appropriate for the central engines of long-duration gamma-ray bursts. We find that significant amounts of Nickel-56 are produced over a wide range of parameter space. We discuss the influence of entropy, outflow timescale and initial disk position on mass fraction of Nickel-56 which is produced. We keep careful track of the weak interactions to ensure reliable calculations of the electron fraction, and discuss the role of the neutrinos.
We examine the nucleosynthesis products that are produced in the outflow from rapidly accreting disks. We find that the type of element synthesis varies dramatically with the degree of neutrino trapping in the disk and therefore the accretion rate of the disk. Disks with relatively high accretion rates such as 10 M_solar/s can produce very neutron rich nuclei that are found in the r process. Disks with more moderate accretion rates can produce copious amounts of Nickel as well as the light elements such as Lithium and Boron. Disks with lower accretion rates such as 0.1 M_solar/s produce large amounts of Nickel as well as some unusual nuclei such as Ti-49, Sc-45, Zn-64, and Mo-92. This wide array of potential nucleosynthesis products is due to the varying influence of electron neutrinos and antineutrinos emitted from the disk on the neutron-to-proton ratio in the outflow. We use a parameterization for the outflow and discuss our results in terms of entropy and outflow acceleration.
Both long-duration gamma-ray bursts (LGRBs) from core collapse of massive stars and short-duration GRBs (SGRBs) from mergers of binary neutron star (BNS) or neutron star--black hole (NSBH) are expected to occur in the accretion disk of active galactic nuclei (AGNs). We show that GRB jets embedded in the migration traps of AGN disks are promised to be choked by the dense disk material. Efficient shock acceleration of cosmic rays at the reverse shock is expected, and high-energy neutrinos would be produced. We find that these sources can effectively produce detectable TeV--PeV neutrinos through $pgamma$ interactions. From a choked LGRB jet with isotropic equivalent energy of $10^{53},{rm erg}$ at $100,{rm Mpc}$, one expects $sim2,(7)$ neutrino events detectable by IceCube (IceCube-Gen2). The contribution from choked LGRBs to the observed diffuse neutrino background depends on the unknown local event rate density of these GRBs in AGN disks. For example, if the local event rate density of choked LGRBs in AGN disk is $sim5%$ that of low-luminosity GRBs $(sim10,{rm Gpc}^{-3},{rm yr}^{-1})$, the neutrinos from these events would contribute to $sim10%$ of the observed diffuse neutrino background. Choked SGRBs in AGN disks are potential sources for future joint electromagnetic, neutrino, and gravitational wave multi-messenger observations.
Recently observed emission lines in the X-ray afterglow of gamma ray bursts suggest that iron group elements are either produced in the gamma ray burst, or are present nearby. If this material is the product of a thermonuclear burn, then such material would be expected to be rich in Nickel-56. If the nickel remains partially ionized, this prevents the electron capture reaction normally associated with the decay of Nickel-56, dramatically increasing the decay timescale. Here we examine the consequences of rapid ejection of a fraction of a solar mass of iron group material from the center of a collapsar/hypernova. The exact rate of decay then depends on the details of the ionization and therefore the ejection process. Future observations of iron, nickel and cobalt lines can be used to diagnose the origin of these elements and to better understand the astrophysical site of gamma ray bursts. In this model, the X-ray lines of these iron-group elements could be detected in suspected hypernovae that did not produce an observable gamma ray burst due to beaming.
Gamma Ray Bursts (GRB) are the extremely energetic transient events, visible from the most distant parts of the Universe. They are most likely powered by accretion on the hyper-Eddington rates that proceeds onto a newly born stellar mass black hole. This central engine gives rise to the most powerful, high Lorentz factor jets that are responsible for energetic gamma ray emission. We investigate the accretion flow evolution in GRB central engine, using the 2D MHD simulations in General Relativity. We compute the structure and evolution of the extremely hot and dense torus accreting onto the fast spinning black hole, which launches the magnetized jets. We calculate the chemical structure of the disk and account for neutrino cooling. Our preliminary runs apply to the short GRB case (remnant torus accreted after NS-NS or NS-BH merger). We estimate the neutrino luminosity of such an event for chosen disk and central BH mass
Classical novae are among the most frequent transient events in the Milky Way, and key agents of ongoing nucleosynthesis. Despite their large numbers, they have never been observed in soft $gamma$-ray emission. Measurements of their $gamma$-ray signatures would provide both, insights on explosion mechanism as well as nucleosynthesis products. Our goal is to constrain the ejecta masses of $mathrm{^7Be}$ and $mathrm{^{22}Na}$ from classical novae through their $gamma$-ray line emissions at 478 and 1275 keV. We extract posterior distributions on the line fluxes from archival data of the INTEGRAL/SPI spectrometer telescope. We then use a Bayesian hierarchical model to link individual objects and diffuse emission and infer ejecta masses from the whole population of classical novae in the Galaxy. Individual novae are too dim to be detectable in soft $gamma$-rays, and the upper bounds on their flux and ejecta mass uncertainties cover several orders of magnitude. Within the framework of our hierarchical model, we can, nevertheless, infer tight upper bounds on the $mathrm{^{22}Na}$ ejecta masses, given all uncertainties from individual objects as well as diffuse emission, of $<2.0 times 10^{-7},mathrm{M_{odot}}$ (99.85th percentile). In the context of ONe nucleosynthesis, the $mathrm{^{22}Na}$ bounds are consistent with theoretical expectations, and exclude that most ONe novae happen on white dwarfs with masses around $1.35,mathrm{M_{odot}}$. The upper bounds from $mathrm{^{7}Be}$ are uninformative. From the combined ejecta mass estimate of $mathrm{^{22}Na}$ and its $beta^+$-decay, we infer a positron production rate of $<5.5 times 10^{42},mathrm{e^+,s^{-1}}$, which would make at most 10% of the total annihilation rate in the Milky Way.