Do you want to publish a course? Click here

Measurement of the parity-violating asymmetry in inclusive electroproduction of $pi^-$ near the $Delta^0$ resonance

209   0   0.0 ( 0 )
 Added by Jeffery Martin
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

The parity-violating (PV) asymmetry of inclusive $pi^-$ production in electron scattering from a liquid deuterium target was measured at backward angles. The measurement was conducted as a part of the G0 experiment, at a beam energy of 360 MeV. The physics process dominating pion production for these kinematics is quasi-free photoproduction off the neutron via the $Delta^0$ resonance. In the context of heavy-baryon chiral perturbation theory (HB$chi$PT), this asymmetry is related to a low energy constant $d_Delta^-$ that characterizes the parity-violating $gamma$N$Delta$ coupling. Zhu et al. calculated $d_Delta^-$ in a model benchmarked by the large asymmetries seen in hyperon weak radiative decays, and predicted potentially large asymmetries for this process, ranging from $A_gamma^-=-5.2$ to $+5.2$ ppm. The measurement performed in this work leads to $A_gamma^-=-0.36pm 1.06pm 0.37pm 0.03$ ppm (where sources of statistical, systematic and theoretical uncertainties are included), which would disfavor enchancements considered by Zhu et al. proportional to $V_{ud}/V_{us}$. The measurement is part of a program of inelastic scattering measurements that were conducted by the G0 experiment, seeking to determine the $N-Delta$ axial transition form-factors using PV electron scattering.

rate research

Read More

71 - D. Elsner , A. Sule , P. Barneo 2005
The reaction p(e,ep)pi^0 has been studied at Q^2=0.2 (GeV/c)^2 in the region of W=1232 MeV. From measurements left and right of q, cross section asymmetries rho_LT have been obtained in forward kinematics rho_LT(theta_pi^0=20deg) = (-11.68 +/- 2.36_stat +/- 2.36_sys)$ and backward kinematics rho_LT(theta_pi^0=160deg) =(12.18 +/- 0.27_stat +/- 0.82_sys). Multipole ratios Re(S_1+^* M_1+)/|M_1+|^2 and Re(S_0+^* M_1+)/|M_1+|^2 were determined in the framework of the MAID2003 model. The results are in agreement with older data. The unusally strong negative Re(S_0+^* M_1+)/|M_1+|^2 required to bring also the result of Kalleicher et al. in accordance with the rest of the data is almost excluded.
378 - D. Wang , K. Pan , R. Subedi 2013
We report on parity-violating asymmetries in the nucleon resonance region measured using $5 - 6$ GeV longitudinally polarized electrons scattering off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the $Delta(1232)$, and provide a verification of quark-hadron duality in the nucleon electroweak $gamma Z$ interference structure functions at the (10-15)% level. The results are of particular interest to models relevant for calculating the $gamma Z$ box-diagram corrections to elastic parity-violating electron scattering measurements.
173 - D. Wang , K. Pan , R. Subedi 2014
The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.
88 - Z. Akbar , P. Roy , S. Park 2017
The double-polarization observable $E$ was studied for the reaction $gamma pto pomega$ using the CEBAF Large Acceptance Spectrometer (CLAS) in Hall B at the Thomas Jefferson National Accelerator Facility and the longitudinally-polarized frozen-spin target (FROST). The observable was measured from the charged decay mode of the meson, $omegatopi^+pi^-pi^0$, using a circularly-polarized tagged-photon beam with energies ranging from the $omega$ threshold at 1.1 to 2.3 GeV. A partial-wave analysis within the Bonn-Gatchina framework found dominant contributions from the $3/2^+$ partial wave near threshold, which is identified with the sub-threshold $N(1720),3/2^+$ nucleon resonance. To describe the entire data set, which consisted of $omega$ differential cross sections and a large variety of polarization observables, further contributions from other nucleon resonances were found to be necessary. With respect to non-resonant mechanisms, $pi$ exchange in the $t$-channel was found to remain small across the analyzed energy range, while pomeron $t$-channel exchange gradually grew from the reaction threshold to dominate all other contributions above $W approx 2$ GeV.
We report the first precision measurement of the parity-violating asymmetry in the direction of proton emission with respect to the neutron spin, in the reaction $^{3}mathrm{He}(mathrm{n},mathrm{p})^{3}mathrm{H}$, using the capture of polarized cold neutrons in an unpolarized active $^3rm{He}$ target. The asymmetry is a result of the weak interaction between nucleons, which remains one of the most poorly understood aspects of electro-weak theory. The measurement provides an important benchmark for modern effective field theory (EFT) calculations. Measurements like this are necessary to determine the spin-isospin structure of the hadronic weak interaction. Our asymmetry result is $A_{PV} = left( 1.58 pm 0.97 ~mathrm{(stat)} pm 0.24~mathrm{(sys)}right)times10^{-8}$, which has the smallest uncertainty of any parity-violating asymmetry measurement so far.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا