Do you want to publish a course? Click here

Narrow optical filtering with plasmonic nanoshells

140   0   0.0 ( 0 )
 Added by Rashid Nazmitdinov
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Narrow optical band pass filters are widely used in systems with optical processing of information, color displays development and optical computers. We show that such ultra filters can be created by means of nanoparticles which consist of a dielectric sphere and a metallic shell. The components can be adjusted such that there is a remarkable transparency at the desired wavelength range, while a strong absorption takes place outside of this region.



rate research

Read More

72 - Duo Pan , Tiantian Shi , Bin Luo 2017
Taking advantages of ultra-narrow bandwidth and high noise rejection performance of the Faraday anomalous dispersion optical filter (FADOF), simultaneously with the coherent amplification of atomic stimulated emission, a stimulated amplified Faraday anomalous dispersion optical filter (SAFADOF) at cesium 1470 nm is realized. The SAFADOF is able to significantly amplify very weak laser signals and reject noise in order to obtain clean signals in strong background. Experiment results show that, for a weak signal of 50 pW, the gain factor can be larger than 25000 (44 dB) within a bandwidth as narrow as 13 MHz. Having this ability to amplify weak signals with low background contribution, the SAFADOF finds outstanding potential applications in weak signal detections.
Prospects of using metal hole arrays for the enhanced optical detection of molecular chirality in nanosize volumes are investigated. Light transmission through the holes filled with an optically active material is modeled and the activity enhancement by more than an order of magnitude is demonstrated. The spatial resolution of the chirality detection is shown to be of a few tens of nanometers. From comparing the effect in arrays of cylindrical holes and holes of complex chiral shape, it is concluded that the detection sensitivity is determined by the plasmonic near field enhancement. The intrinsic chirality of the arrays due to their shape appears to be less important.
114 - D. Becerril , G. Pirruccio , 2021
Inspired by recent advances in atomic homo and heterostructures, we consider the vertical stacking of plasmonic lattices as a new degree of freedom to create a coupled system showing a modified optical response concerning the monolayer. The precise design of the stacking and the geometrical parameters of two honeycomb plasmonic lattices tailors the interaction among their metallic nanoparticles. Based on the similarity of the lattice symmetry, analogies can be drawn with stacked atomic crystals, such as graphene. We use the multipolar spectral representation to study the plasmonic vertical stacks optical response in the near-field regime, emphasizing symmetry properties. The strong coupling of certain optical bands shows up as anticrossings in the dispersion diagram, resulting in the polarization exchange of the interacting bands. By leveraging these effects, we engineer the near-field intensity distribution. Additionally, lifting band degeneracy at specific points of the Brillouin zone is obtained with the consequent opening of minigaps. These effects are understood by quantifying the multipolar coupling among nanospheres belonging to the same and different sublattices, as well as the interlayer and intralayer nanoparticle interactions. Differences with the atomic case are also analyzed and explained in terms of the stacks interaction matrix. Finally, we predict the absorption spectrum projected on the two orthogonal linear polarizations.
The field of plasmonic nanobubbles, referring to bubbles generated around nanoparticles due to plasmonic heating, is growing rapidly in recent years. Theoretical, simulation and experimental studies have been reported to reveal the fundamental physics related to this nanoscale multi-physics phenomenon. Using plasmonic nanobubbles for applications is in the early stage but progressing. In this article, we briefly review the current state of this research field and give our perspectives on the research needs in the theoretical, simulation and experimental fronts. We also give our perspectives on how the fundamental understanding can be applied to more practical applications.
Plasmonic nanopatch antennas that incorporate dielectric gaps hundreds of picometers to several nanometers thick have drawn increasing attention over the past decade because they confine electromagnetic fields to grossly sub-diffraction limited volumes. Substantial control over the optical properties of excitons and color centers confined within these plasmonic cavities has already been demonstrated with far-field optical spectroscopies, but near-field optical spectroscopies are essential to an improved understanding of the plasmon-emitter interaction at the nanoscale. Here, we characterize the intensity and phase-resolved plasmonic response of isolated nanopatch antennas with cathodoluminescence microscopy. Further, we explore the distinction between optical and electron-beam spectroscopies of coupled plasmon-exciton heterostructures to identify constraints and opportunities for future nanoscale characterization and control of hybrid nanophotonic structures. While we observe substantial Purcell enhancement in time-resolved photoluminescence spectroscopies, negligible Purcell enhancement is observed in cathodoluminescence spectroscopies of hybrid nanophotonic structures. The substantial differences in measured Purcell enhancement for electron-beam and laser excitation can be understood as a result of the different selection rules for these complementary experiments. These results provide a fundamentally new understanding of near-field plasmon-exciton interactions in nanopatch antennas that is essential to myriad emerging quantum photonic devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا