Do you want to publish a course? Click here

The Cosmic History of Black Hole Growth from Deep Multiwavelength Surveys

152   0   0.0 ( 0 )
 Added by Ezequiel Treister
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Significant progress has been made in the last few years on understanding how supermassive black holes form and grow. In this paper, we begin by reviewing the spectral signatures of Active Galactic Nuclei (AGN) ranging from radio to hard X-ray wavelengths. We then describe the most commonly used methods to find these sources, including optical/UV, radio, infrared and X-ray emission and optical emission lines. We then describe the main observational properties of the obscured and unobscured AGN population. Finally, we summarize the cosmic history of black hole accretion, i.e., when in the history of the Universe supermassive black holes were getting most of their mass. We finish with a summary of open questions and a description of planned and future observatories that are going to help answer them.



rate research

Read More

The redshifted 21 cm transition line of hydrogen tracks the thermal evolution of the neutral intergalactic medium (IGM) at cosmic dawn, during the emergence of the first luminous astrophysical objects (~100 Myr after the Big Bang) but before these objects ionized the IGM (~400-800 Myr after the Big Bang). Because X-rays, in particular, are likely to be the chief energy courier for heating the IGM, measurements of the 21 cm signature can be used to infer knowledge about the first astrophysical X-ray sources. Using analytic arguments and a numerical population synthesis algorithm, we argue that the progenitors of supermassive black holes (SMBHs) should be the dominant source of hard astrophysical X-rays---and thus the primary driver of IGM heating and the 21 cm signature---at redshifts $z < 20$, if (i) they grow readily from the remnants of Population III stars and (ii) produce X-rays in quantities comparable to what is observed from active galactic nuclei and high-mass X-ray binaries. We show that models satisfying these assumptions dominate over contributions to IGM heating from stellar populations, and cause the 21 cm brightness temperature to rise at $z > 20$. An absence of such a signature in the forthcoming observational data would imply that SMBH formation occurred later (e.g. via so-called direct collapse scenarios), that it was not a common occurrence in early galaxies and protogalaxies, or that it produced far fewer X-rays than empirical trends at lower redshifts, either due to intrinsic dimness (radiative inefficiency) or Compton-thick obscuration close to the source.
136 - W.N. Brandt 2010
Extragalactic X-ray surveys over the past decade have dramatically improved understanding of the majority populations of active galactic nuclei (AGNs) over most of the history of the Universe. Here we briefly highlight some of the exciting discoveries about AGN demography, physics, and ecology with a focus on results from Chandra. We also discuss some key unresolved questions and future prospects.
167 - You Wu 2020
As a candidate of dark matter, primordial black holes (PBHs) have attracted more and more attentions as they could be possible progenitors of the heavy binary black holes (BBHs) observed by LIGO/Virgo. Accurately estimating the merger rate of PBH binaries will be crucial to reconstruct the mass distribution of PBHs. It was pointed out the merger history of PBHs may shift the merger rate distribution depending on the mass function of PBHs. In this paper, we use 10 BBH events from LIGO/Virgo O1 and O2 observing runs to constrain the merger rate distribution of PBHs by accounting the effect of merger history. It is found that the second merger process makes subdominant contribution to the total merger rate, and hence the merger history effect can be safely neglected.
154 - Ryan C. Hickox 2009
Large extragalactic surveys allow us to trace, in a statistical sense, how supermassive black holes, their host galaxies, and their dark matter halos evolve together over cosmic time, and so explore the consequences of AGN feedback on galaxy evolution. Recent studies have found significant links between the accretion states of black holes and galaxy stellar populations, local environments, and obscuration by gas and dust. This article describes some recent results and shows how such studies may provide new constraints on models of the co-evolution of galaxies and their central SMBHs. Finally, I discuss observational prospects for the proposed Wide-Field X-ray Telescope mission.
One of the main themes in extragalactic astronomy for the next decade will be the evolution of galaxies over cosmic time. Many future observatories, including JWST, ALMA, GMT, TMT and E-ELT will intensively observe starlight over a broad redshift range, out to the dawn of the modern Universe when the first galaxies formed. It has, however, become clear that the properties and evolution of galaxies are intimately linked to the growth of their central black holes. Understanding the formation of galaxies, and their subsequent evolution, will therefore be incomplete without similarly intensive observations of the accretion light from supermassive black holes (SMBH) in galactic nuclei. To make further progress, we need to chart the formation of typical SMBH at z>6, and their subsequent growth over cosmic time, which is most effectively achieved with X-ray observations. Recent technological developments in X-ray optics and instrumentation now bring this within our grasp, enabling capabilities fully matched to those expected from flagship observatories at longer wavelengths.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا