No Arabic abstract
Aims. We model the chemistry of the inner wind of the carbon star IRC+10216 and consider the effect of periodic shocks induced by the stellar pulsation on the gas to follow the non-equilibrium chemistry in the shocked gas layers. We consider a very complete set of chemical families, including hydrocarbons and aromatics, hydrides, halogens and phosphorous-bearing species. Derived abundances are compared to the latest observational data from large surveys and Herschel. Results. The shocks induce a non-equilibrium chemistry in the dust formation zone of IRC+10216 where the collision destruction of CO in the post-shock gas triggers the formation of O-bearing species (H2O, SiO). Most of the modelled abundances agree very well with the latest values derived from Herschel data on IRC+10216. Hydrides form a family of abundant species that are expelled into the intermediate envelope. In particular, HF traps all the atomic fluorine in the dust formation zone. Halogens are also abundant and their chemistry is independent of the C/O ratio of the star. Therefore, HCl and other Cl-bearing species should also be present in the inner wind of O-rich AGB or supergiant stars. We identify a specific region ranging from 2.5 R* to 4 R*, where polycyclic aromatic hydrocarbons form and grow. The estimated carbon dust-to-gas mass ratio derived from the mass of aromatics ranges from 1.2 x 10^(-3) to 5.8 x 10^{-3} and agrees well with existing observational values. The aromatic formation region is located outside hot layers where SiC2 is produced as a bi-product of silicon carbide dust synthesis. Finally, we predict that some molecular lines will show flux variation with pulsation phase and time (e.g., H2O) while other species will not (e.g., CO). These variations merely reflect the non-equilibrium chemistry that destroys and reforms molecules over a pulsation period in the shocked gas of the dust formation zone.
We present the detection of C4H2 for first time in the envelope of the C-rich AGB star IRC+10216 based on high spectral resolution mid-IR observations carried out with the Texas Echelon-cross-Echelle Spectrograph (TEXES) mounted on the Infrared Telescope Facility (IRTF). The obtained spectrum contains 24 narrow absorption features above the detection limit identified as lines of the ro-vibrational C4H2 band nu6+nu8(sigma_u^+). The analysis of these lines through a ro-vibrational diagram indicates that the column density of C4H2 is 2.4(1.5)E+16 cm^(-2). Diacetylene is distributed in two excitation populations accounting for 20 and 80% of the total column density and with rotational temperatures of 47(7) and 420(120) K, respectively. This two-folded rotational temperature suggests that the absorbing gas is located beyond ~0.4~20R* from the star with a noticeable cold contribution outwards from ~10~500R*. This outer shell matches up with the place where cyanoacetylenes and carbon chains are known to form due to the action of the Galactic dissociating radiation field on the neutral gas coming from the inner layers of the envelope.
Context: The presence of water in the wind of the extreme carbon star IRC+10216 has been confirmed by the Herschel telescope. The regions where the high-J H2O lines have been detected are close to the star at radii r geq 15 Rast. Aims: We investigate the formation of water and related molecules in the periodically-shocked inner layers of IRC+10216 where dust also forms and accelerates the wind. Methods: We describe the molecular formation by a chemical kinetic network involving carbon-and oxygen-based molecules. We then apply this network to the physical conditions pertaining to the dust-formation zone which experiences the passage of pulsation- driven shocks between 1 and 5 Rast. We solve for a system of stiff, coupled, ordinary, and differential equations. Results: Non-equilibrium chemistry prevails in the dust-formation zone. H2O forms quickly above the photosphere from the synthesis of hydroxyl OH induced by the thermal fragmentation of CO in the hot post-shock gas. The derived abundance with respect to H2 at 5 Rast is 1.4times10-7, which excellently agrees the values derived from Herschel observations. The non-equilibrium formation process of water will be active whatever the stellar C/O ratio, and H2O should then be present in the wind acceleration zone of all stars on the Asymptotic Giant Branch.
Linear carbon chains are common in various types of astronomical molecular sources. Possible formation mechanisms involve both bottom-up and top-down routes. We have carried out a combined observational and modeling study of the formation of carbon chains in the C-star envelope IRC+10216, where the polymerization of acetylene and hydrogen cyanide induced by ultraviolet photons can drive the formation of linear carbon chains of increasing length. We have used ALMA to map the emission of 3 mm rotational lines of the hydrocarbon radicals C2H, C4H, and C6H, and the CN-containing species CN, C3N, HC3N, and HC5N with an angular resolution of 1. The spatial distribution of all these species is a hollow, 5-10 wide, spherical shell located at a radius of 10-20 from the star, with no appreciable emission close to the star. Our observations resolve the broad shell of carbon chains into thinner sub-shells which are 1-2 wide and not fully concentric, indicating that the mass loss process has been discontinuous and not fully isotropic. The radial distributions of the species mapped reveal subtle differences: while the hydrocarbon radicals have very similar radial distributions, the CN-containing species show more diverse distributions, with HC3N appearing earlier in the expansion and the radical CN extending later than the rest of the species. The observed morphology can be rationalized by a chemical model in which the growth of polyynes is mainly produced by rapid gas-phase chemical reactions of C2H and C4H radicals with unsaturated hydrocarbons, while cyanopolyynes are mainly formed from polyynes in gas-phase reactions with CN and C3N radicals.
A new chemical model is presented for the carbon-rich circumstellar envelope of the AGB star IRC+10216. The model includes shells of matter with densities that are enhanced relative to the surrounding circumstellar medium. The chemical model uses an updated reaction network including reactions from the RATE06 database and a more detailed anion chemistry. In particular, new mechanisms are considered for the formation of CN-, C3N- and C2H-, and for the reactions of hydrocarbon anions with atomic nitrogen and with the most abundant cations in the circumstellar envelope. New reactions involving H- are included which result in the production of significant amounts of C2H- and CN- in the inner envelope. The calculated radial molecular abundance profiles for the hydrocarbons C2H, C4H and C6H and the cyanopolyynes HC3N and HC5N show narrow peaks which are in better agreement with observations than previous models. Thus, the narrow rings observed in molecular microwave emission surrounding IRC+10216 are interpreted as arising in regions of the envelope where the gas and dust densities are greater than the surrounding circumstellar medium. Our models show that CN- and C2H- may be detectable in IRC+10216 despite the very low theorised radiative electron attachment rates of their parent neutral species. We also show that magnesium isocyanide (MgNC) can be formed in the outer envelope through radiative association involving Mg+ and the cyanopolyyne species.
During the transition from the Asymptotic Giant Branch (AGB) to Planetary Nebulae (PN), the circumstellar geometry and morphology change dramatically. Another characteristic of this transition is the high mass loss rate, that can be partially explained by radiation pressure and a combination of various factors like the stellar pulsation, the dust grain condensation and opacity in the upper atmosphere. The magnetic field can also be one of the main ingredients that shapes the stellar upper atmosphere and envelope. Our main goal is to investigate for the first time the spatial distribution of the magnetic field in the envelope of IRC+10216. More generally we intend to determine the magnetic field strength in the circumstellar envelope (CSE) of C-rich evolved stars, compare this field with previous studies for O-rich stars, and constrain the variation of the magnetic field with r the distance to the stars center. We use spectropolarimetric observations of the Stokes V parameter, collected with Xpol on the IRAM-30m radiotelescope, observing the Zeeman effect in seven hyperfine components of the CN J = 1-0 line. We use Crutchers method to estimate the magnetic field. For C-rich evolved stars, we derive a magnetic field strength (B) between 1.6 and 14.2 mG while B is estimated to be 6 mG for the proto-PN (PPN) AFGL618, and an upper value of 8 mG is found for the PN NGC7027. These results are consistent with a decrease of B as 1/r in the environment of AGB objects, i.e., with the presence of a toroidal field. But this is not the case for PPN and PN stars. Our map of IRC+10216 suggests that the magnetic field is not homogeneously strong throughout or aligned with the envelope and that the morphology of the CN emission might have changed with time.