Do you want to publish a course? Click here

Structural and insulator-to-metal phase transition at 50 GPa in GdMnO3

148   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of the effect of very high pressure on the orthorhombic perovskite GdMnO3 by Raman spectroscopy and synchrotron x-ray diffraction up to 53.2 GPa. The experimental results yield a structural and insulator-to-metal phase transition close to 50 GPa, from an orthorhombic to a metrically cubic structure. The phase transition is of first order with a pressure hysteresis of about 6 GPa. The observed behavior under very high pressure might well be a general feature in rare-earth manganites.



rate research

Read More

In addition to its promising potential for applications, GaV4S8 shows very interesting physical properties with temperature and magnetic field. These properties can be tuned by applying hydrostatic pressure in order to reveal and understand the physics of these materials. Not only pressure induces an insulator-to-metal transition in GaV4S8 but it also has an interesting effect on the structural and magnetic transitions. Using a combination of AC calorimetry, capacitance, and resistivity measurements under pressure, we determine the evolution of the structural and magnetic transitions with pressure and thus establish the T-P phase diagram of GaV4S8. To detect the insulator-to-metal transition, we use optical conductivity and DC resistivity measurements and we follow the evolution of the Mott gap under pressure. The structural transition temperature increases with pressure and a second transition appears above 6 GPa indicating a possible new phase with a very small gap. Pressure has surprisingly a very weak effect on the ferromagnetic transition that persists even very close to the IMT that occurs at around 14 GPa, implying that the metallic state may also be magnetic.
An abrupt first-order metal-insulator transition (MIT) without structural phase transition is first observed by current-voltage measurements and micro-Raman scattering experiments, when a DC electric field is applied to a Mott insulator VO_2 based two-terminal device. An abrupt current jump is measured at a critical electric field. The Raman-shift frequency and the bandwidth of the most predominant Raman-active A_g mode, excited by the electric field, do not change through the abrupt MIT, while, they, excited by temperature, pronouncedly soften and damp (structural MIT), respectively. This structural MIT is found to occur secondarily.
245 - S. Kettemann , E. R. Mucciolo , 2009
It is well-known that magnetic impurities can change the symmetry class of disordered metallic systems by breaking spin and time-reversal symmetry. At low temperature these symmetries can be restored by Kondo screening. It is also known that at the Anderson metal-insulator transition, wave functions develop multifractal fluctuations with power law correlations. Here, we consider the interplay of these two effects. We show that multifractal correlations open local pseudogaps at the Fermi energy at some random positions in space. When dilute magnetic impurities are at these locations, Kondo screening is strongly suppressed. We find that when the exchange coupling J is smaller than a certain value J*, the metal-insulator transition point extends to a critical region in the disorder strength parameter and to a band of critical states. The width of this critical region increases with a power of the concentration of magnetic impurities.
The discovery of novel phases of matter is at the core of modern physics. In quantum materials, subtle variations in atomic-scale interactions can induce dramatic changes in macroscopic properties and drive phase transitions. Despite their importance, the mesoscale processes underpinning phase transitions often remain elusive because of the vast differences in timescales between atomic and electronic changes and thermodynamic transformations. Here, we photoinduce and directly observe with x-ray scattering an ultrafast enhancement of the structural long-range order in the archetypal Mott system V2O3. Despite the ultrafast change in crystal symmetry, the change of unit cell volume occurs an order of magnitude slower and coincides with the insulator-to-metal transition. The decoupling between the two structural responses in the time domain highlights the existence of a transient photoinduced precursor phase, which is distinct from the two structural phases present in equilibrium. X-ray nanoscopy reveals that acoustic phonons trapped in nanoscale blocks govern the dynamics of the ultrafast transition into the precursor phase, while nucleation and growth of metallic domains dictate the duration of the slower transition into the metallic phase. The enhancement of the long-range order before completion of the electronic transition demonstrates the critical role the non-equilibrium structural phases play during electronic phase transitions in correlated electrons systems.
The semiconductor-insulator phase transition of the single-layer manganite La0.5Sr1.5MnO4 has been studied by means of high resolution synchrotron x-ray powder diffraction and resonant x-ray scattering at the Mn K edge. We conclude that a concomitant structural transition from tetragonal I4/mmm to orthorhombic Cmcm phases drives this electronic transition. A detailed symmetry-mode analysis reveals that condensation of three soft modes -Delta_2(B2u), X1+(B2u) and X1+(A)- acting on the oxygen atoms accounts for the structural transformation. The Delta_2 mode leads to a pseudo Jahn-Teller distortion (in the orthorhombic bc-plane only) on one Mn site (Mn1) whereas the two X1+ modes produce an overall contraction of the other Mn site (Mn2) and expansion of the Mn1 one. The X1+ modes are responsible for the tetragonal superlattice (1/2,1/2,0)-type reflections in agreement with a checkerboard ordering of two different Mn sites. A strong enhancement of the scattered intensity has been observed for these superlattice reflections close to the Mn K edge, which could be ascribed to some degree of charge disproportion between the two Mn sites of about 0.15 electrons. We also found that the local geometrical anisotropy of the Mn1 atoms and its ordering originated by the condensed Delta_2 mode alone perfectly explains the resonant scattering of forbidden (1/4,1/4,0)-type reflections without invoking any orbital ordering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا