Do you want to publish a course? Click here

Dopant metrology in advanced FinFETs

93   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultra-scaled FinFET transistors bear unique fingerprint-like device-to-device differences attributed to random single impurities. This paper describes how, through correlation of experimental data with multimillion atom tight-binding simulations using the NEMO 3-D code, it is possible to identify the impuritys chemical species and determine their concentration, local electric field and depth below the Si/SiO$_{mathrm{2}}$ interface. The ability to model the excited states rather than just the ground state is the critical component of the analysis and allows the demonstration of a new approach to atomistic impurity metrology.



rate research

Read More

The presence of interface states at the MOS interface is a well-known cause of device degradation. This is particularly true for ultra-scaled FinFET geometries where the presence of a few traps can strongly influence device behavior. Typical methods for interface trap density (Dit) measurements are not performed on ultimate devices, but on custom designed structures. We present the first set of methods that allow direct estimation of Dit in state-of-the-art FinFETs, addressing a critical industry need.
This paper discusses how classical transport theories such as the thermionic emission, can be used as a powerful tool for the study and the understanding of the most complex mechanisms of transport in Fin Field Effect Transistors (FinFETs). By means of simple current and differential conductance measurements, taken at different temperatures and different gate voltages ($V_G$s), it is possible to extrapolate the evolution of important parameters such as the spatial region of transport and the height of thermionic barrier at the centre of the channel. Furthermore, if the measurements are used in conjunction with simulated data, it becomes possible to also extract the interface trap density of these objects. These are important results, also because these parameters are extracted directly on state-of-the-art devices and not in specially-designed test structures. The possible characterisation of the different regimes of transport that can arise in these ultra-scaled devices having a doped or an undoped channel are also discussed. Examples of these regimes are, full body inversion and weak body inversion. Specific cases demonstrating the strength of the thermionic tool are discussed in sections ref{sec:II}, ref{sec:III} and ref{sec:IV}. This text has been designed as a comprehensive overview of 4 related publications (see Ref. [2-5]) and has been submitted as a book chapter in Ref. [6]).
We have performed a metrological characterization of the quantum Hall resistance in a 1 $mu$m wide graphene Hall-bar. The longitudinal resistivity in the center of the $ u=pm 2$ quantum Hall plateaus vanishes within the measurement noise of 20 m$Omega$ upto 2 $mu$A. Our results show that the quantization of these plateaus is within the experimental uncertainty (15 ppm for 1.5$ mu$A current) equal to that in conventional semiconductors. The principal limitation of the present experiments are the relatively high contact resistances in the quantum Hall regime, leading to a significantly increased noise across the voltage contacts and a heating of the sample when a high current is applied.
Single dopants in semiconductor nanostructures have been studied in great details recently as they are good candidates for quantum bits, provided they are coupled to a detector. Here we report coupling of a single As donor atom to a single-electron transistor (SET) in a silicon nanowire field-effect transistor. Both capacitive and tunnel coupling are achieved, the latter resulting in a dramatic increase of the conductance through the SET, by up to one order of magnitude. The experimental results are well explained by the rate equations theory developed in parallel with the experiment.
The downscaling of silicon-based structures and proto-devices has now reached the single atom scale, representing an important milestone for the development of a silicon-based quantum computer. One especially notable platform for atomic scale device fabrication is the so-called SiP delta-layer, consisting of an ultra dense and sharp layer of dopants within a semiconductor host. Whilst several alternatives exist, phosphorus dopants in silicon have drawn the most interest, and it is on this platform that many quantum proto-devices have been successfully demonstrated. Motivated by this, both calculations and experiments have been dedicated to understanding the electronic structure of the SiP delta-layer platform. In this work, we use high resolution angle-resolved photoemission spectroscopy (ARPES) to reveal the structure of the electronic states which exist because of the high dopant density of the SiP delta-layer. In contrast to published theoretical work, we resolve three distinct bands, the most occupied of which shows a large anisotropy and significant deviation from simple parabolic behaviour. We investigate the possible origins of this fine structure, and conclude that it is primarily a consequence of the dielectric constant being large (ca. double that of bulk Si). Incorporating this factor into tight binding calculations leads to a major revision of band structure; specifically, the existence of a third band, the separation of the bands, and the departure from purely parabolic behaviour. This new understanding of the bandstructure has important implications for quantum proto-devices which are built on the SiP delta-layer platform.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا