Do you want to publish a course? Click here

Categorical Foundations for K-Theory

160   0   0.0 ( 0 )
 Added by Nicolas Michel
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

Recall that the definition of the $K$-theory of an object C (e.g., a ring or a space) has the following pattern. One first associates to the object C a category A_C that has a suitable structure (exact, Waldhausen, symmetric monoidal, ...). One then applies to the category A_C a $K$-theory machine, which provides an infinite loop space that is the $K$-theory K(C) of the object C. We study the first step of this process. What are the kinds of objects to be studied via $K$-theory? Given these types of objects, what structured categories should one associate to an object to obtain $K$-theoretic information about it? And how should the morphisms of these objects interact with this correspondence? We propose a unified, conceptual framework for a number of important examples of objects studied in $K$-theory. The structured categories associated to an object C are typically categories of modules in a monoidal (op-)fibred category. The modules considered are locally trivial with respect to a given class of trivial modules and a given Grothendieck topology on the object Cs category.



rate research

Read More

124 - Marc Hoyois 2016
We construct geometric models for classifying spaces of linear algebraic groups in G-equivariant motivic homotopy theory, where G is a tame group scheme. As a consequence, we show that the equivariant motivic spectrum representing the homotopy K-theory of G-schemes (which we construct as an E-infinity-ring) is stable under arbitrary base change, and we deduce that homotopy K-theory of G-schemes satisfies cdh descent.
We show that if X is a toric scheme over a regular ring containing a field then the direct limit of the K-groups of X taken over any infinite sequence of nontrivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze.
This paper is the first in a series in which we offer a new framework for hermitian K-theory in the realm of stable $infty$-categories. Our perspective yields solutions to a variety of classical problems involving Grothendieck-Witt groups of rings and clarifies the behaviour of these invariants when 2 is not invertible. In this article we lay the foundations of our approach by considering Luries notion of a Poincare $infty$-category, which permits an abstract counterpart of unimodular forms called Poincare objects. We analyse the special cases of hyperbolic and metabolic Poincare objects, and establish a version of Ranickis algebraic Thom construction. For derived $infty$-categories of rings, we classify all Poincare structures and study in detail the process of deriving them from classical input, thereby locating the usual setting of forms over rings within our framework. We also develop the example of visible Poincare structures on $infty$-categories of parametrised spectra, recovering the visible signature of a Poincare duality space. We conduct a thorough investigation of the global structural properties of Poincare $infty$-categories, showing in particular that they form a bicomplete, closed symmetric monoidal $infty$-category. We also study the process of tensoring and cotensoring a Poincare $infty$-category over a finite simplicial complex, a construction featuring prominently in the definition of the L- and Grothendieck-Witt spectra that we consider in the next instalment. Finally, we define already here the 0-th Grothendieck-Witt group of a Poincare $infty$-category using generators and relations. We extract its basic properties, relating it in particular to the 0-th L- and algebraic K-groups, a relation upgraded in the second instalment to a fibre sequence of spectra which plays a key role in our applications.
In fall of 2019, the Thursday Seminar at Harvard University studied motivic infinite loop space theory. As part of this, the authors gave a series of talks outlining the main theorems of the theory, together with their proofs, in the case of infinite perfect fields. These are our extended notes on these talks.
Over any field of characteristic not 2, we establish a 2-term resolution of the $eta$-periodic, 2-local motivic sphere spectrum by shifts of the connective 2-local Witt K-theory spectrum. This is curiously similar to the resolution of the K(1)-local sphere in classical stable homotopy theory. As applications we determine the $eta$-periodized motivic stable stems and the $eta$-periodized algebraic symplectic and SL-cobordism groups. Along the way we construct Adams operations on the motivic spectrum representing Hermitian K-theory and establish new completeness results for certain motivic spectra over fields of finite virtual 2-cohomological dimension. In an appendix, we supply a new proof of the homotopy fixed point theorem for the Hermitian K-theory of fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا