No Arabic abstract
First-principles calculations of substitutional defects and vacancies are performed for zigzag-edged hybrid C/BN nanosheets and nanotubes which recently have been proposed to exhibit half-metallic properties. The formation energies show that defects form preferentially at the interfaces between graphene and BN domains rather than in the middle of these domains, and that substitutional defects dominate over vacancies. Chemical control can be used to favor localization of defects at C- B interfaces (nitrogen-rich environment) or C-N interfaces (nitrogen-poor environment). Although large defect concentrations have been considered here (106 cm-1), half-metallic properties can subsist when defects are localized at the C-B interface and for negatively charged defects localized at the C- N interface, hence the promising magnetic properties theoretically predicted for these zigzag-edged nanointerfaces might not be destroyed by point defects if these are conveniently engineered during synthesis.
First-principles density functional calculations are performed in C-BN heterojunctions. It is shown that the magnetism of the edge states in zigzag shaped graphene strips and polarity effects in BN strips team up to give a spin asymmetric screening that induces half-semimetallicity at the interface, with a gap of at least a few tenths of eV for one spin orientation and a tiny gap of hundredths of eV for the other. The dependence with ribbon widths is discussed, showing that a range of ribbon widths is required to obtain half-semimetallicity. These results open new routes for tuning electronic properties at nanointerfaces and exploring new physical effects similar to those observed at oxide interfaces, in lower dimensions.
The transition metal dichalcogenide 1T-TiSe2 is a quasi two-dimensional layered material with a charge density wave (CDW) transition temperature of TCDW 200 K. Self-doping effects for crystals grown at different temperatures introduce structural defects, modify the temperature dependent resistivity and strongly perturbate the CDW phase. Here we study the structural and doping nature of such native defects combining scanning tunneling microscopy/spectroscopy and ab initio calculations. The dominant native single atom dopants we identify in our single crystals are intercalated Ti atoms, Se vacancies and Se substitutions by residual iodine and oxygen.
This PhD thesis is divided in 6 chapters. In chapter 1 we introduce basic superconducting phenomena. Such as, the BCS theory, the Andreev reflection and the proximity effect, and the charge current transport in superconducting tunnel junctions. In chapter 2 we present the Keldysh nonequilibrium Green function formalism used to obtain the results of this thesis, together with clarifying examples corresponding to simple junctions. In chapter 3, the subgap transport properties of a SIF structure are studied. We devote chapter 4 to the study of thermal transport in superconducting nanohybrid structures. In chapter 5, we develop a general theory for the microwave-irradiated high-transmittance superconducting quantum point contact (SQPC), which consists of a thin constriction of superconducting material in which the Andreev states can be observed. The thesis concludes with a summary of the obtained results in chapter 6. The detailed derivation of the quasiclassical equations is presented in the appendix.
We report first-principles density-functional theory studies of native point defects and defect complexes in olivine-type LiFePO4, a promising candidate for rechargeable Li-ion battery electrodes. The defects are characterized by their formation energies which are calculated within the GGA+U framework. We find that native point defects are charged, and each defect is stable in one charge state only. Removing electrons from the stable defects always generates defect complexes containing small hole polarons. Defect formation energies, hence concentrations, and defect energy landscapes are all sensitive to the choice of atomic chemical potentials which represent experimental conditions. One can, therefore, suppress or enhance certain native defects in LiFePO4 via tuning the synthesis conditions. Based on our results, we provide insights on how to obtain samples in experiments with tailored defect concentrations for targeted applications. We also discuss the mechanisms for ionic and electronic conduction in LiFePO4 and suggest strategies for enhancing the electrical conductivity.
Using scanning tunneling microscopy and spectroscopy, we visualized the native defects in antiferromagnetic topological insulator $mathrm{MnBi_2Te_4}$. Two native defects $mathrm{Mn_{Bi}}$ and $mathrm{Bi_{Te}}$ antisites can be well resolved in the topographic images. $mathrm{Mn_{Bi}}$ tend to suppress the density of states at conduction band edge. Spectroscopy imaging reveals a localized peak-like local density of state at $sim80$~meV below the Fermi energy. A careful inspection of topographic and spectroscopic images, combined with density functional theory calculation, suggests this results from $mathrm{Bi_{Mn}}$ antisites at Mn sites. The random distribution of $mathrm{Mn_{Bi}}$ and $mathrm{Bi_{Mn}}$ antisites results in spatial fluctuation of local density of states near the Fermi level in $mathrm{MnBi_2Te_4}$.