Do you want to publish a course? Click here

Near- and Mid-Infrared colors of evolved stars in the Galactic plane. The Q1 and Q2 parameters

174   0   0.0 ( 0 )
 Added by Messineo Maria
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Mass-loss from evolved stars chemically enriches the ISM. Stellar winds from massive stars and their explosions as SNs shape the ISM and trigger star formation. Studying evolved stars is fundamental for understanding galaxy formation and evolution, at any redshift. We aim to establish a photometric classification scheme for Galactic mass-losing evolved stars (e.g., WR, RSG, and AGB stars) with the goal of identifying new ones, and subsequently to use the sample as tracers of Galactic structure. We searched for counterparts of known Galactic WR, LBV, RSG, and O-rich AGBs in the 2MASS, GLIMPSE, and MSX catalogs, and we analyzed their properties with near- and mid-infrared color-color diagrams. We used the Q1 parameter, which measures the deviation from the interstellar reddening vector in the J-H versus H-Ks diagram, and we defined a new parameter, Q2, that measures the deviation from the interstellar reddening vector in the J-Ks versus Ks-[8.0] diagram. The latter plane enables to distinguish between interstellar and circumstellar reddening, and to identify stars with envelopes. WR stars and late-type mass-losing stars are distributed in two different regions of the Q1 versus Ks-[8.0] diagram. A sequence of increasing [3.6]-[4.5] and [3.6]-[8.0] colors with increasing pulsation amplitudes (SRs, Miras, and OH/IRs) is found. Spectra of Miras and OH/IRs have stronger H2O absorption at 3.0um than SRs or most of the RSGs. Masing Miras have H2O, but stronger SiO (~ 4 um) and CO2 absorption (~4.25 um), as suggested by their bluer [3.6]-[4.5] colors. A fraction of RSGs (22%) have the bluest [3.6]-[4.5] colors, but small Q2 values. We propose a new set of photometric criteria to distinguish among IR bright Galactic stars. The GLIMPSE catalog is a powerful tool for photometric classification of mass-losing evolved stars. Our new criteria will yield many new RSGs and WRs.



rate research

Read More

{The Galactic centre (GC) is a unique astrophysical laboratory to study the stellar population of galactic nuclei because it is the only galactic nucleus whose stars can be resolved down to milliparsec scales. However, the extreme and spatially highly variable interstellar extinction towards the GC poses a serious obstacle to photometric stellar classification.} {Our goal is to identify hot, massive stars in the nuclear stellar disc (NSD) region through combining near-infrared (NIR) and mid-infrared (MIR) photometry, and thus to demonstrate the feasibility of this technique, which may gain great importance with the arrival of the James Webb Space Telescope (JWST).} {We combined the GALACTICNUCLEUS NIR survey with the IRAC/Spitzer MIR survey of the GC. We applied the so-called Rayleigh-Jeans colour excess (RJCE) de-reddening method to our combined NIR-MIR data to identify potential hot stars in colour-magnitude diagrams (CMDs).} {Despite the very low angular resolution of IRAC we find 12 clear candidates for young massive stars among the $1,065$ sources that meet our selection criteria. Seven out of these 12 stars are previously known hot, massive stars belonging to the Arches and Quintuplet clusters, as well as sources detected by the Hubble Space Telescope/NICMOS Paschen-$alpha$ survey. Five of our massive star candidates have not been previously reported in the literature.} {We show that the RJCE method is a valuable tool to identify hot stars in the GC using photometry alone. Upcoming instruments with high angular resolution MIR imaging capabilities such as the JWST could surely make more substantial use of this de-reddening method and help establish a far more complete census of hot, young stars in the GC area than what is possible at the moment.}
187 - R. G. Arendt 2008
A mid-infrared (3.6-8 um) survey of the Galactic Center has been carried out with the IRAC instrument on the Spitzer Space Telescope. This survey covers the central 2x1.4 degree (~280x200 pc) of the Galaxy. At 3.6 and 4.5 um the emission is dominated by stellar sources, the fainter ones merging into an unresolved background. At 5.8 and 8 um the stellar sources are fainter, and large-scale diffuse emission from the ISM of the Galaxys central molecular zone becomes prominent. The survey reveals that the 8 to 5.8 um color of the ISM emission is highly uniform across the surveyed region. This uniform color is consistent with a flat extinction law and emission from polycyclic aromatic hydrocarbons (PAHs). Models indicate that this broadband color should not be expected to change if the incident radiation field heating the dust and PAHs is <10^4 times that of the solar neighborhood. The few regions with unusually red emission are areas where the PAHs are underabundant and the radiation field is locally strong enough to heat large dust grains to produce significant 8 um emission. These red regions include compact H II regions, Sgr B1, and wider regions around the Arches and Quintuplet Clusters. In these regions the radiation field is >10^4 times that of the solar neighborhood. Other regions of very red emission indicate cases where thick dust clouds obscure deeply embedded objects or very early stages of star formation.
We analyse a sample of 85 luminous (log(nuLnu(3um)/erg s-1)>45.5) quasars with restframe ~2-11 um spectroscopy from AKARI and Spitzer. Their high luminosity allows a direct determination of the near-infrared quasar spectrum free from host galaxy emission. A semi-empirical model consisting of a single template for the accretion disk and two blackbodies for the dust emission successfully reproduces the 0.1-10 um spectral energy distributions (SEDs). Excess emission at 1-2 um over the best-fitting model suggests that hotter dust is necessary in addition to the ~1200 K blackbody and the disk to reproduce the entire near-infrared spectrum. Variation in the extinction affecting the disk and in the relative strength of the disk and dust components accounts for the diversity of individual SEDs. Quasars with higher dust-to-disk luminosity ratios show slightly redder infrared continua and less prominent silicate emission. We find no luminosity dependence in the shape of the average infrared quasar spectrum. We generate a new quasar template that covers the restframe range 0.1-11 um, and separate templates for the disk and dust components. Comparison with other infrared quasar composites suggests that previous ones are less reliable in the 2-4 um range. Our template is the first one to provide a detailed view of the infrared emission on both sides of the 4 um bump.
We present the results of a search for mid-infrared signs of star formation activity in the 1.1 mm sources in the Bolocam Galactic Plane Survey (BGPS). We have correlated the BGPS catalog with available mid-IR Galactic plane catalogs based on the Spitzer Space Telescope GLIMPSE legacy survey and the Midcourse Space Experiment (MSX) Galactic plane survey. We find that 44% (3,712 of 8,358) of the BGPS sources contain at least one mid-IR source, including 2,457 of 5,067 (49%) within the area where all surveys overlap (10 deg < l < 65 deg). Accounting for chance alignments between the BGPS and mid-IR sources, we conservatively estimate that 20% of the BPGS sources within the area where all surveys overlap show signs of active star formation. We separate the BGPS sources into four groups based on their probability of star formation activity. Extended Green Objects (EGOs) and Red MSX Sources (RMS) make up the highest probability group, while the lowest probability group is comprised of starless BGPS sources which were not matched to any mid-IR sources. The mean 1.1 mm flux of each group increases with increasing probability of active star formation. We also find that the starless BGPS sources are the most compact, while the sources with the highest probability of star formation activity are on average more extended with large skirts of emission. A subsample of 280 BGPS sources with known distances demonstrates that mass and mean H_2 column density also increase with probability of star formation activity.
We report long-baseline interferometric measurements of circumstellar dust around massive evolved stars with the MIDI instrument on the Very Large Telescope Interferometer and provide spectrally dispersed visibilities in the 8-13 micron wavelength band. We also present diffraction-limited observations at 10.7 micron on the Keck Telescope with baselines up to 8.7 m which explore larger scale structure. We have resolved the dust shells around the late type WC stars WR 106 and WR 95, and the enigmatic NaSt1 (formerly WR 122), suspected to have recently evolved from a Luminous Blue Variable (LBV) stage. For AG Car, the protoypical LBV in our sample, we marginally resolve structure close to the star, distinct from the well-studied detached nebula. The dust shells around the two WC stars show fairly constant size in the 8-13 micron MIDI band, with gaussian half-widths of ~ 25 to 40 mas. The compact dust we detect around NaSt1 and AG Car favors recent or ongoing dust formation. Using the measured visibilities, we build spherically symmetric radiative transfer models of the WC dust shells which enable detailed comparison with existing SED-based models. Our results indicate that the inner radii of the shells are within a few tens of AU from the stars. In addition, our models favor grain size distributions with large (~ 1 micron) dust grains. This proximity of the inner dust to the hot central star emphasizes the difficulty faced by current theories in forming dust in the hostile environment around WR stars. Although we detect no direct evidence for binarity for these objects, dust production in a colliding-wind interface in a binary system is a feasible mechanism in WR systems under these conditions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا