Do you want to publish a course? Click here

Constructing a Galactic coordinate system based on near-infrared and radio catalogs

182   0   0.0 ( 0 )
 Added by Jiacheng Liu
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The definition of the Galactic coordinate system was announced by the IAU Sub-Commission 33b on behalf of the IAU in 1958. For more than 50 years the definition of the Galactic coordinate system has remained unchanged from this IAU1958 version. On the basis of deep and all-sky catalogs, the position of the Galactic plane can be revised and updated definitions of the Galactic coordinate systems can be proposed. We re-determine the position of the Galactic plane based on modern large catalogs, such as the Two Micron All-Sky Survey (2MASS) and the SPECFIND v2.0. This paper also aims to propose a possible definition of the optimal Galactic coordinate system by adopting the ICRS position of the Sgr A* at the Galactic center. The near-infrared 2MASS point source catalog and the SPECFIND v2.0 catalog of radio continuum spectra are used to determine the mean position of the Galactic plane on the celestial sphere. By fitting the data to an ideal Galactic equator, the parameters defining the Galactic coordinate system are obtained. We find that the obliquity of the Galactic equator on the ICRS principal plane is about $0.4^circ$ (2MASS) and $0.6^circ$ (SPECFIND v2.0) larger than the J2000.0 value, which is widely used in coordinate transformations between the equatorial $(alpha, delta)$ and the Galactic $(ell, b)$. Depending on the adopted parameters, data, and methods, the largest difference between the resulting Galactic coordinate systems is several arcminutes. We derive revised transformation matrices and parameters describing the orientation of the Galactic coordinate systems in the ICRS at the 1 milli-arcsecond level to match the precision of modern observations. For practical applications, we propose that a revised definition of the Galactic coordinate system should be required in the near future.



rate research

Read More

Initially defined by the IAU in 1958, the galactic coordinate system was thereafter in 1984 transformed from the B1950.0 FK4-based system to the J2000.0 FK5-based system. In 1994, the IAU recommended that the dynamical reference system FK5 be replaced by the ICRS, which is a kinematical non-rotating system defined by a set of remote radio sources. However the definition of the galactic coordinate system was not updated. We consider that the present galactic coordinates may be problematic due to the unrigorous transformation method from the FK4 to the FK5, and due to the non-inertiality of the FK5 system with respect to the ICRS. This has led to some confusions in applications of the galactic coordinates. We tried to find the transformation matrix in the framework of the ICRS after carefully investigating the definition of the galactic coordinate system and transformation procedures, however we could not find a satisfactory galactic coordinate system that is connected steadily to the ICRS. To avoid unnecessary misunderstandings, we suggest to re-consider the definition of the galactic coordinate system which should be directly connected with the ICRS for high precise observation at micro-arcsecond level.
77 - V.F. Braga 2018
Type II Cepheids (T2Cs) are radially pulsating variables that trace old stellar populations and provide distance estimates through their period-luminosity (PL) relation. We trace the structure of old stars in the Bulge using new distance estimates and kinematic properties of T2Cs. We present new NIR photometry of T2Cs in the bulge from the VVV survey. We provide the largest sample (894 stars) of T2Cs with JHKs observations that have accurate periods from the OGLE catalog. Our analysis makes use of the Ks-band time-series to estimate mean magnitudes and distances by means of the PL relation. To constrain the kinematic properties of our targets, we complement our analysis with proper motions (PMs) based on both VVV and Gaia DR2. We derive an empirical Ks-band PL relation that depends on Galactic longitude and latitude: Ks0=(10.66+-0.02)-(2.21+-0.03)*(logP-1.2)-(0.020+-0.003)*l+(0.050+-0.008)*|b| mag; individual extinction corrections are based on a 3D reddening map. Our targets display a centrally concentrated distribution, with solid evidence of ellipsoidal symmetry--similar to the RR Lyrae (RRL) ellipsoid--and a few halo outliers up to >100 kpc. We obtain a distance from the Galactic center of R0=8.46+-0.03(stat.)+-0.11(syst.) kpc. We also find evidence that the bulge T2Cs belong to a kinematically hot population, as the tangential velocity components (sigma vl*=104.2+-3.0 km/s and sigma vb=96.8+-5.5 km/s) agree within 1.2sigma. Moreover, the difference between absolute and relative PM is in good agreement with the PM of Sgr A* from VLBA measures. We conclude that bulge T2Cs display an ellipsoidal distribution and have kinematics similar to RRLs, which are other tracers of the old, low-mass stellar population. T2Cs also provide an estimate of R0 that agrees excellently well with the literature, taking account of the reddening law.
We present monitoring campaign observations at optical and near-infrared (NIR) wavelengths for a radio-loud active galactic nucleus (AGN) at z=0.840, SDSS~J110006.07+442144.3 (hereafter, J1100+4421), which was identified during a flare phase in late February, 2014. The campaigns consist of three intensive observing runs from the discovery to March, 2015, mostly within the scheme of the OISTER collaboration. Optical-NIR light curves and simultaneous spectral energy distributions (SEDs) are obtained. Our measurements show the strongest brightening in March, 2015. We found that the optical-NIR SEDs of J1100+4421 show an almost steady shape despite the large and rapid intranight variability. This constant SED shape is confirmed to extend to $sim5~mu$m in the observed frame using the archival WISE data. Given the lack of absorption lines and the steep power-law spectrum of $alpha_{ u}sim-1.4$, where $f_{ u}propto u^{alpha_{ u}}$, synchrotron radiation by a relativistic jet with no or small contributions from the host galaxy and the accretion disk seems most plausible as an optical-NIR emission mechanism. The steep optical-NIR spectral shape and the large amplitude of variability are consistent with this object being a low $ u_{rm{peak}}$ jet-dominated AGN. In addition, sub-arcsec resolution optical imaging data taken with Subaru Hyper Suprime-Cam does not show a clear extended component and the spatial scales are significantly smaller than the large extensions detected at radio wavelengths. The optical spectrum of a possible faint companion galaxy does not show any emission lines at the same redshift and hence a merging hypothesis for this AGN-related activity is not supported by our observations.
724 - N. Rea , V. Testa 2010
We report on the first near-infrared observations obtained for Rotating RAdio Transients (RRATs). Using adaptive optics devices mounted on the ESO Very Large Telescope (VLT), we observed two objects of this class: RRAT J1819-1458, and RRAT J1317-5759. These observations have been performed in 2006 and 2008, in the J, H and Ks bands. We found no candidate infrared counterpart to RRAT J1317-5759, down to a limiting magnitude of Ks ~ 21. On the other hand, we found a possible candidate counterpart for RRAT J1819-1458, having a magnitude of Ks=20.96+/-0.10 . In particular, this is the only source within a 1 sigma error circle around the sources accurate X-ray position, although given the crowded field we cannot exclude that this is due to a chance coincidence. The infrared flux of the putative counterpart to the highly magnetic RRAT J1819-1458, is higher than expected from a normal radio pulsar, but consistent with that seen from magnetars. We also searched for the near-infrared counterpart to the X-ray diffuse emission recently discovered around RRAT J1819-1458, but we did not detect this component in the near-infrared band. We discuss the luminosity of the putative counterpart to RRAT J1819-1458, in comparison with the near-infrared emission of all isolated neutron stars detected to date in this band (5 pulsars and 7 magnetars).
71 - Y. Onishi , K. Sano , S. Matsuura 2018
We report near-infrared (IR) observations of high Galactic latitude clouds to investigate diffuse Galactic light (DGL), which is starlight scattered by interstellar dust grains. The observations were performed at $1.1$ and $1.6,rm{mu m}$ with a wide-field camera instrument, the Multi-purpose Infra-Red Imaging System (MIRIS) onboard the Korean satellite STSAT-3. The DGL brightness is measured by correlating the near-IR images with a far-IR $100,rm{mu m}$ map of interstellar dust thermal emission. The wide-field observation of DGL provides the most accurate DGL measurement achieved to date. We also find a linear correlation between optical and near-IR DGL in the MBM32 field. To study interstellar dust properties in MBM32, we adopt recent dust models with or without $rm{mu m}$-sized very large grains and predict the DGL spectra, taking into account reddening effect of interstellar radiation field. The result shows that observed color of the near-IR DGL is closer to the model spectra without very large grains. This may imply that dust growth in the observed MBM32 field is not active owing to its low density of interstellar medium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا