Do you want to publish a course? Click here

On The Lack of Time Dilation Signatures in Gamma-ray Burst Light Curves

141   0   0.0 ( 0 )
 Added by Daniel Kocevski
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the effects of time dilation on the temporal profiles of gamma-ray burst (GRB) pulses. By using prescriptions for the shape and evolution of prompt gamma-ray spectra, we can generate a simulated population of single pulsed GRBs at a variety of redshifts and observe how their light curves would appear to a gamma-ray detector here on Earth. We find that the observer frame duration of individual pulses does not increase as a function of redshift as one would expect from the cosmological expansion of a Friedman-Lemaitre-Robertson-Walker Universe. In fact, the duration of individual pulses is seen to decrease as their signal-to-noise decreases with increasing redshift, as only the brightest portion of a high redshift GRBs light curve is accessible to the detector. The results of our simulation are consistent with the fact that a systematic broadening of GRB durations as a function of redshift has not materialized in either the Swift or Fermi detected GRBs with known redshift. We show that this fundamental duration bias implies that the measured durations and associated Eiso estimates for GRBs detected near an instruments detection threshold should be considered lower limits to their true values. We conclude by predicting that the average peak-to-peak time for a large number of multi-pulsed GRBs as a function of redshift may eventually provide the evidence for time dilation that has so far eluded detection.



rate research

Read More

We study the evolution with redshift of three measures of gamma-ray burst (GRB) duration ($T_{rm 90}$, $T_{rm 50}$ and $T_{rm R45}$) in a fixed rest frame energy band for a sample of 232 Swift/BAT detected GRBs. Binning the data in redshift we demonstrate a trend of increasing duration with increasing redshift that can be modelled with a power-law for all three measures. Comparing redshift defined subsets of rest-frame duration reveals that the observed distributions of these durations are broadly consistent with cosmological time dilation. To ascertain if this is an instrumental effect, a similar analysis of Fermi/GBM data for the 57 bursts detected by both instruments is conducted, but inconclusive due to small number statistics. We then investigate under-populated regions of the duration redshift parameter space. We propose that the lack of low-redshift, long duration GRBs is a physical effect due to the sample being volume limited at such redshifts. However, we also find that the high-redshift, short duration region of parameter space suffers from censorship as any Swift GRB sample is fundamentally defined by trigger criteria determined in the observer frame energy band of Swift/BAT. As a result, we find that the significance of any evidence for cosmological time dilation in our sample of duration measures typically reduces to $<2sigma$.
We investigate the effect that the absorption of high-energy (above 100 MeV) photons produced in GRB afterglow shocks has on the light-curves and spectra of Fermi-LAT afterglows. Afterglows produced by the interaction of a relativistic outflow with a wind-like medium peak when the blast-wave deceleration sets in, and the afterglow spectrum could be hardening before that peak, as the optical thickness to pair-formation is decreasing. In contrast, in afterglows produced in the interaction with a homogeneous medium, the optical thickness to pair-formation should increase and yield a light-curve peak when it reaches unity, followed by a fast light-curve decay, accompanied by a spectral softening. If energy is injected in the blast-wave, then the accelerated increase of the optical thickness yields a convex afterglow light-curve. Other features, such as a double-peak light-curve or a broad hump, can arise from the evolution of the optical thickness to photon-photon absorption. Fast decays and convex light-curves are seen in a few LAT afterglows, but the expected spectral softening is rarely seen in (and difficult to measure with) LAT observations. Furthermore, for the effects of photon-photon attenuation to shape the high-energy afterglow light-curve without attenuating it too much, the ejecta initial Lorentz factor must be in a relatively narrow range (50-200), which reduces the chance of observing those effects.
Despite over 50 years of research, many open questions remain about the origin and nature of GRBs. Polarization measurements of the prompt emission of these extreme phenomena have long been thought to be the key to answering a range of these questions. The POLAR detector was designed to produce the first set of detailed and reliable polarization measurements in an energy range of approximately 50-500 keV. During late 2016 and early 2017, POLAR detected a total of 55 GRBs. Analysis results of 5 of these GRBs have been reported in the past. The results were found to be consistent with a low or unpolarized flux. However, previous reports by other collaborations found high levels of polarization. We study the polarization for all the 14 GRBs observed by POLAR for which statistically robust inferences are possible. Additionally, time-resolved polarization studies are performed on GRBs with sufficient apparent flux. A publicly available polarization analysis tool, developed within the 3ML framework, was used to produce statistically robust results. The method allows to combine spectral and polarimetric data from POLAR with spectral data from the Fermi GBM and Swift-BAT to jointly model the spectral and polarimetric parameters. The time integrated analysis finds all results to be compatible with a low or zero polarization with the caveat that, when time-resolved analysis is possible within individual pulses, we observe moderate polarization with a rapidly changing polarization angle. Thus, time-integrated polarization results, while pointing to lower polarization are potentially an artifact of summing over the changing polarization signal and thus, washing out the true moderate polarization. Therefore, we caution against over interpretation of any time-integrated results and encourage one to wait for more detailed polarization measurements from forthcoming missions such as POLAR-2 and LEAP.
The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotron radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; $gtrsim$~GeV) remains uncertain. The recent detection of sub-TeV emission from GRB~190114C by MAGIC raises further debate on what powers the very high-energy (VHE; $gtrsim 300$GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multi-wavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters. Studying GRB~190114C, we find that its afterglow emission in the fermi-LAT band is synchrotron-dominated.The late-time fermi-LAT measurement (i.e., $tsim 10^4$~s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (i.e. $lesssim 3times 10^{-9},{rm erg,cm^{-3}}$), making the inverse Compton dominant in the sub-TeV energies.
We previously obtained constraints on the viewing geometries of 6 Fermi LAT pulsars using a multiwavelength approach (Seyffert et al., 2011). To obtain these constraints we compared the observed radio and $gamma$-ray light curves (LCs) for those 6 pulsars by eye to LCs predicted by geometric models detailing the location and extent of emission regions in a pulsar magnetosphere. As a precursor to obtaining these constraints, a parameter study was conducted to reinforce our qualitative understanding of how the underlying model parameters effect the LCs produced by the geometric models. Extracting useful trends from the $gamma$-ray model LCs proved difficult though due to the increased complexity of the geometric models for the $gamma$-ray emission relative to those for the radio emission. In this paper we explore a second approach to investigating the interplay between the model parameters and the LC atlas. This approach does not attempt to understand how the set of model parameters influences the LC shapes directly, but rather, more fundamentally, investigates how the set of model parameters effects the sky maps from which the latter are extracted. This allows us to also recognise structure within the atlas itself, as we are now able to attribute certain features of the LCs to specific features on the sky map, meaning that we not only understand how the structure of single LCs come about, but also how their structure changes as we move through the geometric solution space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا