No Arabic abstract
Detailed temperature dependence of both superconducting gaps was obtained directly by means of SnS-Andreev spectroscopy. The Delta sigma,pi(T) -curves were shown to be deviated from standard BCS-like behavior, due to k-space proximity effect between sigma - and pi - condensates, which could give a key to experimental determination of interband electron-phonon coupling constants. For the first time, an excellent qualitative agreement with theoretical predictions of Nicol and Carbotte, and Moskalenko and Suhl was shown. dI(V)/dV-spectra of SnS-Andreev contacts based on MgB2 samples (with defects of crystal structure), and Mg(Al)B2 polycrystalline samples (with the local critical temperatures Tc variation 10 K < Tc < 37 K) were studied by means of the break-junction technique within the temperature range 4.2 K < T < Tc.
We present direct measurements of the superconducting order parameter in nearly optimal FeSe$_{0.5}$Te$_{0.5}$ single crystals with critical temperature $T_C approx 14$ K. Using intrinsic multiple Andreev reflection effect (IMARE) spectroscopy and measurements of lower critical field, we directly determined two superconducting gaps, $Delta_L approx 3.3 - 3.4$ meV and $Delta_S approx 1$ meV, and their temperature dependences. We show that a two-band model fits well the experimental data. The estimated electron-boson coupling constants indicate a strong intraband and a moderate interband interaction.
Point contact Andreev reflection studies have been conducted on FeSe single crystals by lowering the temperatures down to 0.5 K. The point contact Andreev reflection spectra were analyzed in the framework of the two-band model. As a result, the presence of two anisotropic superconducting gaps in FeSe were certainly established and their BCS-like temperature dependencies were obtained. The weights of each gap have been determined and the anisotropy parameter has been calculated. It is shown, that sub-kelvin temperatures are necessary to ascertain details of the superconducting gap structure, especially for multiband materials when Andreev reflection spectroscopy is applied.
FeSe single crystals have been studied by soft point-contact Andreev-reflection spectroscopy. Superconducting gap features in the differential resistance dV/dI(V) of point contacts such as a characteristic Andreev-reflection double-minimum structure have been measured versus temperature and magnetic field. Analyzing dV/dI within the extended two-gap Blonder-Tinkham-Klapwijk model allows to extract both the temperature and magnetic field dependence of the superconducting gaps. The temperature dependence of both gaps is close to the standard BCS behavior. Remarkably, the magnitude of the double-minimum structure gradually vanishes in magnetic field, while the minima position only slightly shifts with field indicating a weak decrease of the superconducting gaps. Analyzing the dV/dI(V) spectra for 25 point contacts results in the averaged gap values <Delta_L> = 1.8+/-0.4meV and <Delta_S>=1.0+/-0.2 meV and reduced values 2<Delta_L>/kTc=4.2+/-0.9 and 2<Delta_S>/kTc=2.3+/-0.5 for the large (L) and small (S) gap, respectively. Additionally, the small gap contribution was found to be within tens of percent decreasing with both temperature and magnetic field. No signatures in the dV/dI spectra were observed testifying a gapless superconductivity or presence of even smaller gaps.
Using two experimental techniques, we studied single crystals of the 122-FeAs family with almost the same critical temperature, Tc. We investigated the temperature dependence of the lower critical field of a single crystal under static magnetic fields parallel to the axis. The temperature dependence of the London penetration depth can be described equally well either by a single anisotropic -wave-like gap or by a two-gap model, while a d-wave approach cannot be used to fit the London penetration depth data. Intrinsic multiple Andreev reflection effect spectroscopy was used to detect bulk gap values in single crystals of the intimate compound, with the same Tc. We estimated the range of the large gap value 6-8 meV (depending on small variation of and its a space anisotropy of about 30%, and the small gap 1.7 meV. This clearly indicates that the gap structure of our investigated systems more likely corresponds to a nodeless s-wave two gaps.
Using intrinsic multiple Andreev reflections effect (IMARE) spectroscopy, we studied SnS contacts in the layered oxypnictide superconductors Sm$_{1-x}$Th$_x$OFeAs with various thorium doping and critical temperatures $T_C = 21-54$ K. We observe a scaling between both superconducting gaps and $T_C$. The determined BCS-ratio for the large gap $2Delta_L/k_BT_C = 5.0-5.7$ and its eigen BCS-ratio (in a hypothetical case of zero interband coupling) $2Delta_L/k_BT_C^L = 4.1-4.6$ both exceeding the weak-coupling limit 3.52, and for the small gap $2Delta_S/k_BT_C = 1.2-1.6$ remain nearly constant within all the $T_C$ range studied. The temperature dependences $Delta_{L,S}(T)$ agree well with a two-band BCS-like Moskalenko and Suhl model. We prove intraband coupling to be stronger than interband coupling, whereas and Coulomb repulsion constants $mu^{ast}$ are finite in Sm-based oxypnictides.