Do you want to publish a course? Click here

The Spatial Clustering of ROSAT All-Sky Survey AGNs III. Expanded Sample and Comparison with Optical AGNs

248   0   0.0 ( 0 )
 Added by Mirko Krumpe
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

This is the third paper in a series that reports on our investigation of the clustering properties of AGNs identified in the ROSAT All-Sky Survey (RASS) and Sloan Digital Sky Survey (SDSS). In this paper, we extend the redshift range to 0.07<z<0.50 and measure the clustering amplitudes of both X-ray and optically-selected SDSS broad-line AGNs with and without radio detections as well as for X-ray selected narrow-line RASS/SDSS AGNs. We measure the clustering amplitude through cross-correlation functions (CCFs) with SDSS galaxies and derive the bias by applying a halo occupation distribution (HOD) model directly to the CCFs. We find no statistically convincing difference in the clustering of X-ray and optically-selected broad-line AGNs, as well as with samples in which radio-detected AGNs are excluded. This is in contrast to low redshift optically-selected narrow-line AGNs, where radio-loud AGNs are found in more massive halos than optical AGNs without a radio-detection. The typical dark matter halo masses of our broad-line AGNs are log M_DMH/[h^(-1) M_SUN] ~ 12.4-13.4, consistent with the halo mass range of typical non-AGN galaxies at low redshifts. We find no significant difference between the clustering of X-ray selected narrow-line AGNs and broad-line AGNs. We confirm the weak dependence of the clustering strength on AGN X-ray luminosity at a ~2 sigma level. Finally, we summarize the current picture of AGN clustering to z~1.5 based on three dimensional clustering measurements.



rate research

Read More

438 - Takamitsu Miyaji 2010
This is the second paper of a series that reports on our investigation of the clustering properties of AGNs in the ROSAT All-Sky Survey (RASS) through cross-correlation functions (CCFs) with Sloan Digital Sky Survey (SDSS) galaxies. In this paper, we apply the Halo Occupation Distribution (HOD) model to the CCFs between the RASS Broad-line AGNs with SDSS Luminous Red Galaxies (LRGs) in the redshift range 0.16<z<0.36 that was calculated in paper I. In our HOD modeling approach, we use the known HOD of LRGs and constrain the HOD of the AGNs by a model fit to the CCF. For the first time, we are able to go beyond quoting merely a `typical AGN host halo mass, M_h, and model the full distribution function of AGN host dark matter halos. In addition, we are able to determine the large-scale bias and the mean M_h more accurately. We explore the behavior of three simple HOD models. Our first model (Model A) is a truncated power-law HOD model in which all AGNs are satellites. With this model, we find an upper limit to the slope (alpha) of the AGN HOD that is far below unity. The other two models have a central component, which has a step function form, where the HOD is constant above a minimum mass, without (Model B) or with (Model C) an upper mass cutoff, in addition to the truncated power-law satellite component, similar to the HOD that is found for galaxies. In these two models we find the upper limits of alpha < 0.95 and alpha < 0.84 for Model B and C respectively. Our analysis suggests that the satellite AGN occupation increases slower than, or may even decrease with, M_h, in contrast to the satellites HODs of luminosity-threshold samples of galaxies, which, in contrast, grow approximately as propto M_h^alpha with alphaapprox 1. These results are consistent with observations that the AGN fraction in groups and clusters decreases with richness.
We present a study of the X-ray properties of a volume-limited sample of optically selected emission-line galaxies. The sample is derived from a correlation between the KPNO International Spectroscopic Survey (KISS), an H-alpha-selected objective-prism survey of AGNs and starbursting galaxies, and the ROSAT All-Sky Survey (RASS). After elimination of all spurious matches, we identify 18 ROSAT-detected X-ray sources within the KISS sample in the 0.1-2.4 keV band. Due to soft X-ray selection effects, the majority of the ROSAT sources are Seyfert 1 galaxies. The majority (54%) of the ROSAT-KISS Seyferts are classified as narrow-line Seyfert 1 objects, a relatively high percentage compared to previous objective-prism-selected Seyfert galaxy samples. We estimate the X-ray luminosities of the ROSAT-detected KISS objects and derive volume emissivities of 6.63 x 10^38 ergs/s/Mpc^3 and 1.45 x 10^38 ergs/s/Mpc^3 for the 30 deg and 43 deg survey strips, respectively. For those KISS AGNs not detected by RASS, we use the median L_X/L_H-alpha ratio derived from a previous study to estimate L_X. The total 0.5-2 keV volume emissivity we predict for the overall KISS AGN sample is sufficient to account for 22.1 +/- 8.9% of the soft X-ray background (XRB), averaged over both survey strips. The KISS AGN sample is made up predominantly of intermediate-luminosity Seyfert 2s and LINERs, which tend to be weak soft X-ray sources. They may, however, represent a much more significant contribution to the hard XRB.
We investigate the clustering properties of ~1550 broad-line active galactic nuclei (AGNs) at <z>=0.25 detected in the ROSAT All-Sky Survey (RASS) through their measured cross-correlation function with ~46,000 Luminous Red Galaxies (LRGs) in the Sloan Digital Sky Survey. By measuring the cross-correlation of our AGN sample with a larger tracer set of LRGs, we both minimize shot noise errors due to the relatively small AGN sample size and avoid systematic errors due to the spatially varying Galactic absorption that would affect direct measurements of the auto-correlation function (ACF) of the AGN sample. The measured ACF correlation length for the total RASS-AGN sample (<L_(0.1-2.4 keV)>=1.5 x 10^(44) erg/s) is r_0=4.3^{+0.4}_{-0.5} h^(-1) Mpc and the slope gamma=1.7^{+0.1}_{-0.1}. Splitting the sample into low and high L_X samples at L_(0.5-10 keV)=10^(44) erg/s, we detect an X-ray luminosity dependence of the clustering amplitude at the ~2.5 sigma level. The low L_X sample has r_0=3.3^{+0.6}_{-0.8} h^(-1) Mpc (gamma=1.7^{+0.4}_{-0.3}), which is similar to the correlation length of blue star-forming galaxies at low redshift. The high L_X sample has r_0=5.4^{+0.7}_{-1.0} h^(-1) Mpc (gamma=1.9^{+0.2}_{-0.2}), which is consistent with the clustering of red galaxies. From the observed clustering amplitude, we infer that the typical dark matter halo (DMH) mass harboring RASS-AGN with broad optical emission lines is log (M_DMH/(h^(-1) M_SUN)) =12.6^{+0.2}_{-0.3}, 11.8^{+0.6}_{-infty}, 13.1^{+0.2}_{-0.4} for the total, low L_X, and high L_X RASS-AGN samples, respectively.
Some indications for tension have long been identified between cosmological constraints obtained from galaxy clusters and primary CMB measurements. Typically, assuming the matter density and fluctuations, as parameterized with Omega_m and sigma_8, estimated from CMB measurements, many more clusters are expected than those actually observed. One possible explanation could be that certain types of galaxy groups or clusters were missed in samples constructed in previous surveys, resulting in a higher incompleteness than estimated. We aim to determine if a hypothetical class of very extended, low surface brightness, galaxy groups or clusters have been missed in previous X-ray cluster surveys based on the ROSAT All-Sky Survey (RASS). We applied a dedicated source detection algorithm sensitive also to more unusual group or cluster surface brightness distributions. We found many known but also a number of new group candidates, which are not included in any previous X-ray / SZ cluster catalogs. In this paper, we present a pilot sample of 13 very extended groups discovered in the RASS at positions where no X-ray source has been detected previously and with clear optical counterparts. The X-ray fluxes of at least 5 of these are above the nominal flux-limits of previous RASS cluster catalogs. They have low mass ($10^{13} - 10^{14} M_{odot}$; i.e., galaxy groups), are at low redshift (z<0.08), and exhibit flatter surface brightness distributions than usual. We demonstrate that galaxy groups were missed in previous RASS surveys, possibly due to the flat surface brightness distributions of this potential new population. Analysis of the full sample will show if this might have a significant effect on previous cosmological parameter constraints based on RASS cluster surveys. (This is a shortened version of the abstract - full text in the article)
We compare the optical spectral types with the X-ray spectral properties for a uniformly selected (sources with fluxes greater than the 3 sigma level and above a flux limit of f_2-8 keV > 3.5x10^-15 erg/cm2/s), highly spectroscopically complete (>80% for f_2-8 keV > 10^-14 erg/cm2/s and >60% below) 2-8 keV X-ray sample observed in three Chandra fields (CLANS, CLASXS, and the CDF-N) that cover ~1.2 deg^2. For our sample of 645 spectroscopically observed sources, we confirm that there is significant overlap of the X-ray spectral properties, as determined by the effective photon indices, Geff, obtained from the ratios of the 0.5-2 keV to 2-8 keV counts, for the different optical spectral types. For example, of the broad-line AGNs (non-broad-line AGNs), 20% +/- 3% (33% +/- 4%) have Geff<1.2 (Geff > 1.2). Thus, one cannot use the X-ray spectral classifications and the optical spectral classifications equivalently. Since it is not understood how X-ray and optical classifications relate to the obscuration of the central engine, we strongly advise against a mixed classification scheme, as it can only complicate the interpretation of X-ray AGN samples. We confirm the dependence of optical spectral type on X-ray luminosity, and for z<1, we find a similar luminosity dependence of Geff. However, this dependence breaks down at higher redshifts due to the highly redshift-dependent nature of Geff. We therefore also caution that any classification scheme which depends on Geff is likely to suffer from serious redshift bias.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا