No Arabic abstract
A search for the double beta decay of zinc and tungsten isotopes has been performed with the help of radiopure ZnWO4 crystal scintillators (0.1-0.7 kg) at the Gran Sasso National Laboratories of the INFN. The total exposure of the low background measurements is 0.529 kg yr. New improved half-life limits on the double beta decay modes of 64Zn, 70Zn, 180W, and 186W have been established at the level of 10^{18}-10^{21} yr. In particular, limits on double electron capture and electron capture with positron emission in 64Zn have been set: T_{1/2}(2 u 2K) > 1.1 10^{19} yr, T_{1/2} (0 u 2epsilon) > 3.2 10^{20} yr, T_{1/2} (2 u epsilon beta^+) > 9.4 10^{20} yr, and T_{1/2} (0 u epsilon beta^+) > 8.5 10^{20} yr, all at 90% C.L. Resonant neutrinoless double electron capture in 180W has been restricted on the level of T_{1/2} (0 u 2epsilon) > 1.3 10^{18} yr. A new half-life limit on alpha transition of 183W to the metastable excited level 1/2^- 375 keV of 179Hf has been established: T_{1/2} > 6.7 10^{20} yr.
Double beta processes in 64-Zn, 70-Zn, 180-W, and 186-W have been searched for with the help of large volume (0.1-0.7 kg) low background ZnWO4 crystal scintillators at the Gran Sasso National Laboratories of the INFN. Total time of measurements exceeds 10 thousands hours. New improved half-life limits on double electron capture and electron capture with positron emission in 64-Zn have been set, in particular (all the limits are at 90% C.L.): T1/2(0nu2EC)> 1.1e20 yr, T1/2(2nuECbeta+)>7.0e20 yr, and T1/2(0nuECbeta+)>4.3e20 yr. The different modes of double beta processes in 70-Zn, 180-W, and 186-W have been restricted at the level of 1e17-1e20 yr.
The radioactive contamination of ZnWO4 crystal scintillators has been measured deep underground at the Gran Sasso National Laboratory (LNGS) of the INFN in Italy with a total exposure 3197 kg x h. Monte Carlo simulation, time-amplitude and pulse-shape analyses of the data have been applied to estimate the radioactive contamination of the ZnWO4 samples. One of the ZnWO4 crystals has also been tested by ultra-low background gamma spectrometry. The radioactive contaminations of the ZnWO4 samples do not exceed 0.002 -- 0.8 mBq/kg (depending on the radionuclide), the total alpha activity is in the range: 0.2 - 2 mBq/kg. Particular radioactivity, beta active 65Zn and alpha active 180W, has been detected. The effect of the re-crystallization on the radiopurity of the ZnWO4 crystal has been studied. The radioactive contamination of samples of the ceramic details of the set-ups used in the crystals growth has been checked by low background gamma spectrometry. A project scheme on further improvement of the radiopurity level of the ZnWO4 crystal scintillators is briefly addressed.
The data collected with a radioactively pure ZnWO$_4$ crystal scintillator (699 g) in low background measurements during 2130 h at the underground (3600 m w.e.) Laboratori Nazionali del Gran Sasso (INFN, Italy) were used to set a limit on possible concentration of superheavy eka-W (seaborgium Sg, Z = 106) in the crystal. Assuming that one of the daughters in a chain of decays of the initial Sg nucleus decays with emission of high energy $alpha$ particle ($Q_alpha > 8$ MeV) and analyzing the high energy part of the measured $alpha$ spectrum, the limit N(Sg)/N(W) < 5.5 $times$ 10$^{-14}$ atoms/atom at 90% C.L. was obtained (for Sg half-life of 10$^9$ yr). In addition, a limit on the concentration of eka-Bi was set by analysing the data collected with a large BGO scintillation bolometer in an experiment performed by another group [L. Cardani et al., JINST 7 (2012) P10022]: N(eka-Bi)/N(Bi) < 1.1 $times$ 10$^{-13}$ atoms/atom with 90% C.L. Both the limits are comparable with those obtained in recent experiments which instead look for spontaneous fission of superheavy elements or use the accelerator mass spectrometry.
The double-beta decay of $^{116}$Cd has been investigated with the help of radiopure enriched $^{116}$CdWO$_4$ crystal scintillators (mass of 1.162 kg) at the Gran Sasso underground laboratory. The half-life of $^{116}$Cd relatively to the $2 u2beta$ decay to the ground state of $^{116}$Sn was measured with the highest up-to-date accuracy as $T_{1/2}=(2.63^{+0.11}_{-0.12})times10^{19}$ yr. A new improved limit on the 0$ u$2$beta$ decay of $^{116}$Cd to the ground state of $^{116}$Sn was set as $T_{1/2}geq 2.2 times 10^{23}$ yr at 90% C.L., which is the most stringent known restriction for this isotope. It corresponds to the effective Majorana neutrino mass limit in the range $langle m_ uranglele(1.0-1.7)$ eV, depending on the nuclear matrix elements used in the estimations. New improved half-life limits for the 0$ u$2$beta$ decay with majoron(s) emission, Lorentz-violating $2 u2beta$ decay and $2beta$ transitions to excited states of $^{116}$Sn were set at the level of $T_{1/2}geq 10^{20}-10^{22}$ yr. New limits for the hypothetical lepton-number violating parameters (right-handed currents admixtures in weak interaction, the effective majoron-neutrino coupling constants, R-parity violating parameter, Lorentz-violating parameter, heavy neutrino mass) were set.
PbWO4 crystal scintillators are discussed as an active shield and light-guides in 116Cd double beta decay experiment with CdWO4 scintillators. Scintillation properties and radioactive contamination of PbWO4 scintillators were investigated. Energy resolution of CdWO4 detector, coupled to PbWO4 crystal as a light-guide, was tested. Efficiency of PbWO4-based active shield to suppress background from the internal contamination of PbWO4 crystals was calculated. Using of lead tungstate crystal scintillators as high efficiency 4-pi active shield could allow to build sensitive double beta experiment with 116CdWO4 crystal scintillators.