No Arabic abstract
The nonequilibrium dynamics of molecular devices is studied in the framework of a generic model for single-molecule transistors: a resonant level coupled by displacement to a single vibrational mode. In the limit of a broad level and in the vicinity of the resonance, the model can be controllably reduced to a form quadratic in bosonic operators, which in turn is exactly solvable. The response of the system to a broad class of sudden quenches and ac drives is thus computed in a nonperturbative manner, providing an asymptotically exact solution in the limit of weak electron-phonon coupling. From the analytic solution we are able to (1) explicitly show that the system thermalizes following a local quantum quench, (2) analyze in detail the time scales involved, (3) show that the relaxation time in response to a quantum quench depends on the observable in question, and (4) reveal how the amplitude of long-time oscillations evolves as the frequency of an ac drive is tuned across the resonance frequency. Explicit analytical expressions are given for all physical quantities and all nonequilibrium scenarios under study.
Signal propagation in the non equilibirum evolution after quantum quenches has recently attracted much experimental and theoretical interest. A key question arising in this context is what principles, and which of the properties of the quench, determine the characteristic propagation velocity. Here we investigate such issues for a class of quench protocols in one of the central paradigms of interacting many-particle quantum systems, the spin-1/2 Heisenberg XXZ chain. We consider quenches from a variety of initial thermal density matrices to the same final Hamiltonian using matrix product state methods. The spreading velocities are observed to vary substantially with the initial density matrix. However, we achieve a striking data collapse when the spreading velocity is considered to be a function of the excess energy. Using the fact that the XXZ chain is integrable, we present an explanation of the observed velocities in terms of excitations in an appropriately defined generalized Gibbs ensemble.
We explore the non-equilibrium response of Chern insulators. Focusing on the Haldane model, we study the dynamics induced by quantum quenches between topological and non-topological phases. A notable feature is that the Chern number, calculated for an infinite system, is unchanged under the dynamics following such a quench. However, in finite geometries, the initial and final Hamiltonians are distinguished by the presence or absence of edge modes. We study the edge excitations and describe their impact on the experimentally-observable edge currents and magnetization. We show that, following a quantum quench, the edge currents relax towards new equilibrium values, and that there is light-cone spreading of the currents into the interior of the sample.
We present a new family of exchange biased Single Molecule Magnets in which antiferromagnetic coupling between the two components results in quantum behaviour different from that of the individual SMMs. Our experimental observations and theoretical analysis suggest a means of tuning the quantum tunnelling of magnetization in SMMs. See also: W. Wernsdorfer, N. Aliaga-Alcalde, D. Hendrickson, G. Christou, Nature 416 (2002) 406.
We show that the nuclear spin dynamics in the single-molecule magnet Mn12-ac below 1 K is governed by quantum tunneling fluctuations of the cluster spins, combined with intercluster nuclear spin diffusion. We also obtain the first experimental proof that - surprisingly - even deep in the quantum regime the nuclear spins remain in good thermal contact with the lattice phonons. We propose a simple model for how T-independent tunneling fluctuations can relax the nuclear polarization to the lattice, that may serve as a framework for more sophisticated theories.
We deduce a fully analytical model to predict the artifacts of the measuring device handles in Single Molecule Force Spectroscopy experiments. As we show, neglecting the effects of the handle stiffness can lead to crucial overestimation or underestimation of the stability properties and transition thresholds of macromolecules.