Do you want to publish a course? Click here

On correlations and mutual entropy in quantum composed systems

133   0   0.0 ( 0 )
 Added by Yuji Hirota
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the correlations of classical and quantum systems from the information theoretical points of view. We analyze a simple measure of correlations based on entropy (such measure was already investigated as the degree of entanglement by Belavkin, Matsuoka and Ohya). Contrary to naive expectation, it is shown that separable state might possesses stronger correlation than an entangled state.



rate research

Read More

The holographic principle states that on a fundamental level the information content of a region should depend on its surface area rather than on its volume. This counterintuitive idea which has its roots in the nonextensive nature of black-hole entropy serves as a guiding principle in the search for the fundamental laws of Planck-scale physics. In this paper we show that a similar phenomenon emerges from the established laws of classical and quantum physics: the information contained in part of a system in thermal equilibrium obeys an area law. While the maximal information per unit area depends classically only on the number of microscopic degrees of freedom, it may diverge as the inverse temperature in quantum systems. A rigorous relation between area laws and correlations is established and their explicit behavior is revealed for a large class of quantum many-body states beyond equilibrium systems.
We review some concepts and properties of quantum correlations, in particular multipartite measures, geometric measures and monogamy relations. We also discuss the relation between classical and total correlations
We introduce and analyze the notion of mutual entropy-production (MEP) in autonomous systems. Evaluating MEP rates is in general a difficult task due to non-Markovian effects. For bipartite systems, we provide closed expressions in various limiting regimes which we verify using numerical simulations. Based on the study of a biochemical and an electronic sensing model, we suggest that the MEP rates provide a relevant measure of the accuracy of sensing.
We investigate the detailed properties of Observational entropy, introduced by v{S}afr{a}nek et al. [Phys. Rev. A 99, 010101 (2019)] as a generalization of Boltzmann entropy to quantum mechanics. This quantity can involve multiple coarse-grainings, even those that do not commute with each other, without losing any of its properties. It is well-defined out of equilibrium, and for some coarse-grainings it generically rises to the correct thermodynamic value even in a genuinely isolated quantum system. The quantity contains several other entropy definitions as special cases, it has interesting information-theoretic interpretations, and mathematical properties -- such as extensivity and upper and lower bounds -- suitable for an entropy. Here we describe and provide proofs for many of its properties, discuss its interpretation and connection to other quantities, and provide numerous simulations and analytic arguments supporting the claims of its relationship to thermodynamic entropy. This quantity may thus provide a clear and well-defined foundation on which to build a satisfactory understanding of the second thermodynamical law in quantum mechanics.
89 - Sk Sazim , Pankaj Agrawal 2016
We introduce a new information theoretic measure of quantum correlations for multiparticle systems. We use a form of multivariate mutual information -- the interaction information and generalize it to multiparticle quantum systems. There are a number of different possible generalizations. We consider two of them. One of them is related to the notion of quantum discord and the other to the concept of quantum dissension. This new measure, called dissension vector, is a set of numbers -- quantumness vector. This can be thought of as a fine-grained measure, as opposed to measures that quantify some average quantum properties of a system. These quantities quantify/characterize the correlations present in multiparticle states. We consider some multiqubit states and find that these quantities are responsive to different aspects of quantumness, and correlations present in a state. We find that different dissension vectors can track the correlations (both classical and quantum), or quantumness only. As physical applications, we find that these vectors might be useful in several information processing tasks. We consider the role of dissension vectors -- (a) in deciding the security of BB84 protocol against an eavesdropper and (b) in determining the possible role of correlations in the performance of Grover search algorithm. Especially, in the Grover search algorithm, we find that dissension vectors can detect the correlations and show the maximum correlations when one expects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا