The holographic principle states that on a fundamental level the information content of a region should depend on its surface area rather than on its volume. This counterintuitive idea which has its roots in the nonextensive nature of black-hole entropy serves as a guiding principle in the search for the fundamental laws of Planck-scale physics. In this paper we show that a similar phenomenon emerges from the established laws of classical and quantum physics: the information contained in part of a system in thermal equilibrium obeys an area law. While the maximal information per unit area depends classically only on the number of microscopic degrees of freedom, it may diverge as the inverse temperature in quantum systems. A rigorous relation between area laws and correlations is established and their explicit behavior is revealed for a large class of quantum many-body states beyond equilibrium systems.
We propose a static auxiliary field approximation to study the hybridization physics of Kondo systems without the sign problem and use the mutual information to measure the intersite hybridization correlations. Our method takes full account of the spatial fluctuations of the hybridization fields at all orders and overcomes the artificial (first-order) phase transition predicted in the mean-field approximation. When applied to the two-impurity Kondo model, it reveals a logarithmically divergent amplitude mutual information near the so-called Varma-Jones fixed point and a large phase mutual information manifesting the development of intersite phase coherence in the Kondo regime, with observable influences on physical properties. These highlight the importance of hybridization fluctuations and confirm the mutual information as a useful tool to explore the hybridization physics in Kondo systems.
We study the correlations of classical and quantum systems from the information theoretical points of view. We analyze a simple measure of correlations based on entropy (such measure was already investigated as the degree of entanglement by Belavkin, Matsuoka and Ohya). Contrary to naive expectation, it is shown that separable state might possesses stronger correlation than an entangled state.
We derive an exact lower bound to a universal measure of frustration in degenerate ground states of quantum many-body systems. The bound results in the sum of two contributions: entanglement and classical correlations arising from local measurements. We show that average frustration properties are completely determined by the behavior of the maximally mixed ground state. We identify sufficient conditions for a quantum spin system to saturate the bound, and for models with twofold degeneracy we prove that average and local frustration coincide.
We study the behavior of the mutual information (MI) in various quadratic fermionic chains, with and without pairing terms and both with short- and long-range hoppings. The models considered include the short-range Kitaev model and also cases in which the area law for the entanglement entropy is - logarithmically or non-logarithmically - violated. When the area law is violated at most logarithmically, the MI is a monotonically increasing function of the conformal four-point ratio x, also for the Kitaev model. Where non-logarithmic violations of the area law are present, then non-monotonic features of MI can be observed, with a structure of peaks related to the spatial configuration of Bell pairs, and the four-point ratio x is found to be not sufficient to capture the whole structure of the MI. For the model exhibiting perfect volume law, the MI vanishes identically. For the Kitaev model, when it is gapped or the range of the pairing is large enough, then the results have vanishing MI for small x. A discussion of the comparison with the results obtained by the AdS/CFT correspondence in the strong coupling limit is presented.
The laws of thermodynamics, despite their wide range of applicability, are known to break down when systems are correlated with their environments. Here, we generalize thermodynamics to physical scenarios which allow presence of correlations, including those where strong correlations are present. We exploit the connection between information and physics, and introduce a consistent redefinition of heat dissipation by systematically accounting for the information flow from system to bath in terms of the conditional entropy. As a consequence, the formula for the Helmholtz free energy is accordingly modified. Such a remedy not only fixes the apparent violations of Landauers erasure principle and the second law due to anomalous heat flows, but also leads to a generally valid reformulation of the laws of thermodynamics. In this information-theoretic approach, correlations between system and environment store work potential. Thus, in this view, the apparent anomalous heat flows are the refrigeration processes driven by such potentials.