Do you want to publish a course? Click here

Dimensional argument for the impact of turbulent support on the stellar initial mass function

306   0   0.0 ( 0 )
 Added by Gilles Chabrier
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a simple dimensional argument to illustrate the impact of nonthermal support from turbulent velocity dispersion on the shape of the prestellar core mass function (CMF), precursor of the stellar initial mass function (IMF). The argument demonstrates the need to invoke such support to recover the Salpeter slope in the high-mass part of the CMF/IMF, whereas pure thermal support leads to a much steeper slope. This simple dimensional argument clearly highlights the results obtained in the complete Hennebelle-Chabrier theory of the IMF.



rate research

Read More

the present paper, we propose that the stellar initial mass distributions as known as IMF are best fitted by $q$-Weibulls that emerge within nonextensive statistical mechanics. As a result, we show that the Salpeters slope of $sim$2.35 is replaced when a $q$-Weibull distribution is used. Our results point out that the nonextensive entropic index $q$ represents a new approach for understanding the process of the star-forming and evolution of massive stars.
We introduce a new dual power law (DPL) probability distribution function for the mass distribution of stellar and substellar objects at birth, otherwise known as the initial mass function (IMF). The model contains both deterministic and stochastic elements, and provides a unified framework within which to view the formation of brown dwarfs and stars resulting from an accretion process that starts from extremely low mass seeds. It does not depend upon a top down scenario of collapsing (Jeans) masses or an initial lognormal or otherwise IMF-like distribution of seed masses. Like the modified lognormal power law (MLP) distribution, the DPL distribution has a power law at the high mass end, as a result of exponential growth of mass coupled with equally likely stopping of accretion at any time interval. Unlike the MLP, a power law decay also appears at the low mass end of the IMF. This feature is closely connected to the accretion stopping probability rising from an initially low value up to a high value. This might be associated with physical effects of ejections sometimes (i.e., rarely) stopping accretion at early times followed by outflow driven accretion stopping at later times, with the transition happening at a critical time (therefore mass). Comparing the DPL to empirical data, the critical mass is close to the substellar mass limit, suggesting that the onset of nuclear fusion plays an important role in the subsequent accretion history of a young stellar object.
Classical theories for the stellar initial mass function (IMF) predict a peak mass which scales with the properties of the molecular cloud. In this work, we explore a new theory proposed by Lee & Hennebelle (2018). The idea is that the tidal field around first Larson cores prevents the formation of other collapsing clumps within a certain radius. The protostar can then freely accrete the gas within this radius. This leads to a peak mass of roughly $10 , M_{mathrm{1LC}}$, independent of the parent cloud properties. Using simple analytical arguments, we derive a collapse condition for clumps located close to a protostar. We then study the tidal field and the corresponding collapse condition using a series of numerical simulations. We find that the tidal field around protostars is indeed strong enough to prevent clumps from collapsing unless they have high enough densities. For each newly formed protostar, we determine the region in which tidal screening is dominant. We call this the tidal bubble. The mass within this bubble is our estimate for the final mass of the star. Using this formalism, we are able to construct a very good prediction for the final IMF in our simulations. Not only do we correctly predict the peak, but we are also able to reproduced the high and low mass end of the IMF. We conclude that tidal forces are important in determining the final mass of a star and might be the dominant effect in setting the peak mass of the IMF.
The initial mass function (IMF) succinctly characterizes a stellar population, provides a statistical measure of the end result of the star-formation process, and informs our under- standing of the structure and dynamical evolution of stellar clusters, the Milky Way, and other galaxies. Detecting variations in the form of the IMF could provide powerful insights into the processes that govern the formation and evolution of stars, clusters, and galaxies. In this contribution, we review measurements of the IMF in resolved stellar populations, and critically assess the evidence for systematic IMF variations. Studies of the field, local young clusters and associations, and old globular clusters suggest that the vast majority were drawn from a universal IMF, suggesting no gross systematic variations in the IMF over a range of star formation environments, and much of cosmic time. We conclude by highlighting the complimentary roles that Gaia and the Large Synoptic Survey Telescope will play in future studies of the IMF in Galactic stellar populations.
We present a simple statistical analysis of recent numerical simulations exploring the correlation between the core mass function obtained from the fragmentation of a molecular cloud and the stellar mass function which forms from these collapsing cores. Our analysis shows that the distributions of bound cores and sink particles obtained in the simulations are consistent with the sinks being formed predominantly from their parent core mass reservoir, with a statistical dispersion of the order of one third of the core mass. Such a characteristic dispersion suggests that the stellar initial mass function is relatively tightly correlated to the parent core mass function, leading to two similar distributions, as observed. This in turn argues in favor of the IMF being essentially determined at the early stages of core formation and being only weakly affected by the various environmental factors beyond the initial core mass reservoir, at least in the mass range explored in the present study. Accordingly, the final IMF of a star forming region should be determined reasonably accurately, statistically speaking, from the initial core mass function, provided some uniform efficiency factor. The calculations also show that these statistical fluctuations, due e.g. to variations among the core properties, broaden the low-mass tail of the IMF compared with the parent CMF, providing an explanation for the fact that this latter appears to underestimate the number of pre brown dwarf cores compared with the observationally-derived brown dwarf IMF.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا