Do you want to publish a course? Click here

Single pulse analysis of PSR B1133+16 at 8.35 GHz and carousel circulation time

127   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

A successful attempt was made to analyse about 6000 single pulses of PSR B1133+16 obtained with the 100-meter Effelsberg radio-telescope. The high resolution (60 micro-seconds) data were taken at a frequency of 8.35 GHz with a bandwidth of 1.1 GHz. In order to examine the pulse-to-pulse intensity modulations, we performed both the longitude- and the harmonic-resolved fluctuation spectral analysis. We identified the low frequency feature associated with an amplitude modulation at f4 ~ 0.033 P1^(-1), which can be interpreted as the circulation time P4 ~ 30 P1 of the underlying subbeam carousel model. Despite an erratic nature of this pulsar, we also found an evidence of periodic pseudo-nulls with P4 = 28.44 P1. This is exactly the value at which Herfindal & Rankin found periodic pseudo-nulls in their 327 MHz data. We thus believe that this is the actual carousel circulation time in PSR B1133+16, particularly during orderly circulation.



rate research

Read More

119 - O. Maron , M. Serylak , J. Kijak 2013
Aims. To investigate the flux density modulation from pulsars and the existence of specific behaviour of modulation index versus frequency. Methods. Several pulsars have been observed with the Effelsberg radio telescope at 8.35 GHz. Their flux density time series have been corrected for interstellar scintillation effects. Results. We present the measurement of modulation indices for 8 pulsars. We confirm the presence of a critical frequency at ~1 GHz for these pulsars (including 3 new ones from this study). We derived intrinsic modulation indices for the resulting flux density time series. Our data analysis revealed strong single pulses detected from 5 pulsars.
The aim of this work is confirming the optical identification of PSR B1133+16, whose candidate optical counterpart was detected in Very Large Telescope (VLT) images obtained back in 2003. We used new deep optical images of the PSR B1133+16 field obtained with both the 10.4 m Gran Telescopio Canarias (GTC) and the VLT in the g and B bands, respectively, to confirm the detection of its candidate optical counterpart and its coincidence with the most recent pulsars radio coordinates. We did not detect any object at the position of the pulsar candidate counterpart (B~28), measured in our 2003 VLT images. However, we tentatively detected an object of comparable brightness in both the 2012 GTC and VLT images, whose position is offset by ~3.03 from that of the pulsars candidate counterpart in the 2003 VLT images and lies along the pulsars proper motion direction. Accounting for the time span of ~9 years between the 2012 quasi-contemporary GTC and VLT images and the 2003 VLT one, this offset is consistent with the yearly displacement of the pulsar due to its proper motion. Therefore, both the flux of the object detected in the 2012 GTC and VLT images and its position, consistent with the proper motion-corrected pulsar radio coordinates, suggest that we have detected the candidate pulsar counterpart that has moved away from its 2003 discovery position.
83 - W. M. Yan 2018
We report on single-pulse observations of the Galactic Center magnetar PSR J1745$-$2900 that were made using the Parkes 64-m radio telescope with a central frequency of 3.1 GHz at five observing epochs between 2013 July and August. The shape of the integrated pulse profiles was relatively stable across the five observations, indicating that the pulsar was in a stable state between MJDs 56475 and 56514. This extends the known stable state of this pulsar to 6.8 months. Short term pulse shape variations were also detected. It is shown that this pulsar switches between two emission modes frequently and that the typical duration of each mode is about ten minutes. No giant pulses or subpulse drifting were observed. Apparent nulls in the pulse emission were detected on MJD 56500. Although there are many differences between the radio emission of magnetars and normal radio pulsars, they also share some properties. The detection of mode changing and pulse nulling in PSR J1745$-$2900 suggests that the basic radio emission process for magnetars and normal pulsars is the same.
206 - S.V. Zharikov 2007
Aims: We performed deep optical observations of the field of an old, fast-moving radio pulsar PSR B1133+16 in an attempt to detect its optical counterpart and a bow shock nebula. Methods: The observations were carried out using the direct imaging mode of FORS1 at the ESO VLT/UT1 telescope in the B, R, and H_alpha bands. We also used archival images of the same field obtained with the VLT in the B band and with the Chandra/ACIS in X-rays. Results: In the B band we detected a faint (B=28.1+/-0.3) source that may be the optical counterpart of PSR B1133+16, as it is positionally consistent with the radio pulsar and with the X-ray counterpart candidate published earlier. Its upper limit in the R band implies a color index B-R <0.5, which is compatible with the index values for most pulsars identified in the optical range. The derived optical luminosity and its ratio to the X-ray luminosity of the candidate are consistent with expected values derived from a sample of pulsars detected in both spectral domains. No Balmer bow shock was detected, implying a low density of ambient matter around the pulsar. However, in the X-ray and H_alpha images we found the signature of a trail extending ~4-5 behind the pulsar and coinciding with the direction of its proper motion. If confirmed by deeper studies, this is the first time such a trail has been seen in the optical and X-ray wavelengths. Conclusions: Further observations at later epochs are necessary to confirm the identification of the pulsar by the candidates proper motion measurements.
96 - Yi Feng , George Hobbs , Di Li 2020
Using the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we have recorded 10^5 single pulses from PSR J1022+1001. We studied the polarization properties, their energy distribution and their times of arrival. This is only possible with the high sensitivity available using FAST. There is no indication that PSR~J1022+1001 exhibits giant pulse, nulling or traditional mode changing phenomena. The energy in the leading and trailing components of the integrated profile is shown to be correlated. The degree of both linear and circular polarization increases with the pulse flux density for individual pulses. Our data indicates that pulse jitter leads to an excess noise in the timing residuals of 67 ns when scaled to one hour, which is consistent with Liu et al. (2015). We have unsuccessfully trialled various methods to improve timing precision through the selection of specific single pulses. Our work demonstrates that FAST can detect individual pulses from pulsars that are observed in order to detect and study gravitational waves. This capability enables detailed studies, and parameterisation, of the noise processes that affect the sensitivity of a pulsar timing array.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا