Do you want to publish a course? Click here

Granulation in Red Giants: observations by the Kepler mission and 3D convection simulations

201   0   0.0 ( 0 )
 Added by Savita Mathur
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The granulation pattern that we observe on the surface of the Sun is due to hot plasma from the interior rising to the photosphere where it cools down, and descends back into the interior at the edges of granules. This is the visible manifestation of convection taking place in the outer part of the solar convection zone. Because red giants have deeper convection zones and more extended atmospheres than the Sun, we cannot a priori assume that granulation in red giants is a scaled version of solar granulation. Until now, neither observations nor 1D analytical convection models could put constraints on granulation in red giants. However, thanks to asteroseismology, this study can now be performed. The resulting parameters yield physical information about the granulation. We analyze sim1000 red giants that have been observed by Kepler during 13 months. We fit the power spectra with Harvey-like profiles to retrieve the characteristics of the granulation (time scale tau_gran and power P_gran). We also introduce a new time scale, tau_eff, which takes into account that different slopes are used in the Harvey functions. We search for a correlation between these parameters and the global acoustic-mode parameter (the position of maximum power, nu_max) as well as with stellar parameters (mass, radius, surface gravity (log g) and effective temperature (T_eff)). We show that tau_eff nu_max^{-0.89} and P_gran nu_max^{-1.90}, which is consistent with the theoretical predictions. We find that the granulation time scales of stars that belong to the red clump have similar values while the time scales of stars in the red-giant branch are spread in a wider range. Finally, we show that realistic 3D simulations of the surface convection in stars, spanning the (T_eff, log g)-range of our sample of red giants, match the Kepler observations well in terms of trends.



rate research

Read More

More than 1000 red giants have been observed by NASA/Kepler mission during a nearly continuous period of ~ 13 months. The resulting high-frequency resolution (< 0.03 muHz) allows us to study the granulation parameters of these stars. The granulation pattern results from the convection motions leading to upward flows of hot plasma and downward flows of cooler plasma. We fitted Harvey-like functions to the power spectra, to retrieve the timescale and amplitude of granulation. We show that there is an anti-correlation between both of these parameters and the position of maximum power of acoustic modes, while we also find a correlation with the radius, which agrees with the theory. We finally compare our results with 3D models of the convection.
The recently launched TESS mission is for the first time giving us the potential to perform inference asteroseismology across the whole sky. TESS observed the Kepler field entirely in its Sector 14 and partly in Sector 15. Here, we seek to detect oscillations in the red giants observed by TESS in the Kepler field of view. Using the full 4-yr Kepler results as the ground truth, we aim to characterise how well the seismic signal can be detected using TESS data. Because our data are based on one and two sectors of observation, our results will be representative of what one can expect for the vast majority of the TESS data. We detect clear oscillations in $sim$3000 stars with another $sim$1000 borderline (low S/N) cases, all of which yield a measurement of the frequency of maximum acoustic power, numax. In comparison, a simple calculation predicts $sim$4500 stars would show detectable oscillations. Of the clear detections we reliably measure the frequency separation between overtone radial modes, dnu, in 570 stars, meaning an overall dnu yield of 20%, which splits into a one-sector yield of 14% and a two-sector yield of 26%. These yields imply that typical (1-2 sector) TESS data will result in significant detection biases. Hence, to boost the number of stars, one might need to use only numax as the seismic input for stellar property estimation. On the up side, we find little or no bias in the seismic measurements and typical scatter relative to the Kepler `truth is about 5-6% in numax and 2-3% in dnu. These values, coupled with typical uncertainties in parallax, Teff, and Fe/H in a grid-based approach, would provide internal uncertainties of 3% in inferred stellar radius, 6% in mass and 20% in age. Finally, despite relatively large pixels of TESS, we find red giant seismology is not expected to be significantly affected by blending for stars with Tmag < 12.5.
Sun-like stars show intensity fluctuations on a number of time scales due to various physical phenomena on their surfaces. These phenomena can convincingly be studied in the frequency spectra of these stars - while the strongest signatures usually originate from spots, granulation and p-mode oscillations, it has also been suggested that the frequency spectrum of the Sun contains a signature of faculae. We have analyzed three stars observed for 13 months in short cadence (58.84 seconds sampling) by the Kepler mission. The frequency spectra of all three stars, as for the Sun, contain signatures that we can attribute to granulation, faculae, and p-mode oscillations. The temporal variability of the signatures attributed to granulation, faculae and p-mode oscillations were analyzed and the analysis indicates a periodic variability in the granulation and faculae signatures - comparable to what is seen in the Sun.
Context: The study of stellar structure and evolution depends crucially on accurate stellar parameters. The photometry from space telescopes has provided superb data that allowed asteroseismic characterisation of thousands of stars. However, typical targets of space telescopes are rather faint and complementary measurements are difficult to obtain. On the other hand, the brightest, otherwise well-studied stars, are lacking seismic characterization. Aims: Our goal is to use the granulation and/or oscillation time scales measured from photometric time series of bright red giants (1.6$leq$Vmag$leq$5.3) observed with BRITE to determine stellar surface gravities and masses. Methods: We use probabilistic methods to characterize the granulation and/or oscillation signal in the power density spectra and the autocorrelation function of the BRITE time series. Results: We detect a clear granulation and/or oscillation signal in 23 red giant stars and extract the corresponding time scales from the power density spectra as well as the autocorrelation function of the BRITE time series. To account for the recently discovered non-linearity of the classical seismic scaling relations, we use parameters from a large sample of Kepler stars to re-calibrate the scalings of the high- and low-frequency components of the granulation signal. We develop a method to identify which component is measured if only one granulation component is statistically significant in the data. We then use the new scalings to determine the surface gravity of our sample stars, finding them to be consistent with those determined from the autocorrelation signal of the time series. We further use radius estimates from the literature to determine the stellar masses of our sample stars from the measured surface gravities. We also define a statistical measure for the evolutionary stage of the stars.
Eclipsing binaries (EBs) are unique benchmarks for stellar evolution. On the one hand, detached EBs hosting at least one star with detectable solar-like oscillations constitute ideal test objects to calibrate asteroseismic measurements. On the other hand, the oscillations and surface activity of stars that belong to EBs offer unique information about the evolution of binary systems. This paper builds upon previous works dedicated to red giant stars (RG) in EBs -- 20 known systems so far -- discovered by the NASA Kepler mission. Here we report the discovery of 16 RGs in EBs also from the Kepler data. This new sample includes three SB2-EBs with oscillations and six close systems where the RG display a clear surface activity and complete oscillation suppression. Based on dedicated high-resolution spectroscopic observations (Apache Point Observatory, Observatoire de Haute Provence), we focus on three main aspects. From the extended sample of 14 SB2-EBs, we first confirm that the simple application of the asteroseismic scaling relations to RGs overestimates masses and radii of RGs, by about 15% and 5%. This bias can be reduced by employing either new asteroseismic reference values for RGs, or model-based corrections of the asteroseismic parameters. Secondly, we confirm that close binarity leads to a high level of photometric modulation (up to 10%), and a suppression of solar-like oscillations. In particular, we show that it reduces the lifetime of radial modes by a factor of up to 10. Thirdly, we use our 16 new systems to complement previous observational studies that aimed at constraining tidal dissipation in interacting binaries. In particular, we identify systems with circular orbits despite relatively young ages, which suggests exploring complementary tidal dissipation mechanisms in the future. Finally, we report the measurements of mass, radius, and age of three M-dwarf companion stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا