Do you want to publish a course? Click here

Direct measurement of the angular power spectrum of cosmic microwave background temperature anisotropies in the WMAP Data

139   0   0.0 ( 0 )
 Added by Lung-Yih Chiang
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Angular power spectrum of the cosmic microwave background (CMB) temperature anisotropies is one of the most important on characteristics of the Universe such as its geometry and total density. Using flat sky approximation and Fourier analysis, we estimate the angular power spectrum from an ensemble of least foreground-contaminated square patches from WMAP W and V frequency band map. This method circumvents the issue of foreground cleaning and that of breaking orthogonality in spherical harmonic analysis due to masking out the bright Galactic plane region, thereby rendering a direct measurement of the angular power spectrum. We test and confirm Gaussian statistical characteristic of the selected patches, from which the first and second acoustic peak of the power spectrum are reproduced, and the third peak is clearly visible albeit with some noise residual at the tail.



rate research

Read More

We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons cosmic microwave background polarization data from the POLARBEAR experiment. Observations were taken at 150 GHz from 2012 to 2014 which survey three patches of sky totaling 30 square degrees. We test the consistency of the lensing spectrum with a Cold Dark Matter (CDM) cosmology and reject the no-lensing hypothesis at a confidence of 10.9 sigma including statistical and systematic uncertainties. We observe a value of A_L = 1.33 +/- 0.32 (statistical) +/- 0.02 (systematic) +/- 0.07 (foreground) using all polarization lensing estimators, which corresponds to a 24% accurate measurement of the lensing amplitude. Compared to the analysis of the first year data, we have improved the breadth of both the suite of null tests and the error terms included in the estimation of systematic contamination.
76 - N. W. Halverson 2001
We present measurements of anisotropy in the Cosmic Microwave Background (CMB) from the first season of observations with the Degree Angular Scale Interferometer (DASI). The instrument was deployed at the South Pole in the austral summer 1999--2000, and made observations throughout the following austral winter. We have measured the angular power spectrum of the CMB in the range 100<l<900 with high signal-to-noise. In this paper we review the formalism used in the analysis, in particular the use of constraint matrices to project out contaminants such as ground and point source signals, and to test for correlations with diffuse foreground templates. We find no evidence of foregrounds other than point sources in the data, and find a maximum likelihood temperature spectral index beta = -0.1 +/- 0.2 (1 sigma), consistent with CMB. We detect a first peak in the power spectrum at l approx 200, in agreement with previous experiments. In addition, we detect a peak in the power spectrum at l approx 550 and power of similar magnitude at l approx 800 which are consistent with the second and third harmonic peaks predicted by adiabatic inflationary cosmological models.
Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial Cosmic Microwave Background (CMB) and thereby induces new, small-scale $B$-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity $E$- and $B$-mode polarization mapped over $sim30$ square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing $B$-modes is found at 4.2$sigma$ (stat.+sys.) significance. The amplitude of matter fluctuations is measured with a precision of $27%$, and is found to be consistent with the Lambda Cold Dark Matter ($Lambda$CDM) cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing $B$-mode signal in searches for primordial gravitational waves.
We test the hypothesis that the temperature of the cosmic microwave background is consistent with a Gaussian random field defined on the celestial sphere, using de-biased internal linear combination (DILC) map produced from the 3-year WMAP data. We test the phases for spherical harmonic modes with l <= 10 (which should be the cleanest) for their uniformity, randomness, and correlation with those of the foreground templates. The phases themselves are consistent with a uniform distribution, but not for l <= 5, and the differences between phases are not consistent with uniformity. For l=3 and l=6, the phases of the CMB maps cross-correlate with the foregrounds, suggestion the presence of residual contamination in the DLC map even on these large scales. We also use a one-dimensional Fourier representation to assemble a_lm into the Delta T_l(phi) for each l mode, and test the positions of the resulting maxima and minima for consistency with uniformity randomness on the unit circle. The results show significant departures at the 0.5% level, with the one-dimensional peaks being concentrated around phi=180 degs. This strongly significant alignment with the Galactic meridian, together with the cross-correlation of DILC phases with the foreground maps, strongly suggests that even the lowest spherical harmonic modes in the map are significantly contaminated with foreground radiation.
We present a measurement of the cosmic microwave background (CMB) lensing potential using 500 deg$^2$ of 150 GHz data from the SPTpol receiver on the South Pole Telescope. The lensing potential is reconstructed with signal-to-noise per mode greater than unity at lensing multipoles $L lesssim 250$, using a quadratic estimator on a combination of CMB temperature and polarization maps. We report measurements of the lensing potential power spectrum in the multipole range of $100< L < 2000$ from sets of temperature-only, polarization-only, and minimum-variance estimators. We measure the lensing amplitude by taking the ratio of the measured spectrum to the expected spectrum from the best-fit $Lambda$CDM model to the $textit{Planck}$ 2015 TT+lowP+lensing dataset. For the minimum-variance estimator, we find $A_{rm{MV}} = 0.944 pm 0.058{rm (Stat.)}pm0.025{rm (Sys.)}$; restricting to only polarization data, we find $A_{rm{POL}} = 0.906 pm 0.090 {rm (Stat.)} pm 0.040 {rm (Sys.)}$. Considering statistical uncertainties alone, this is the most precise polarization-only lensing amplitude constraint to date (10.1 $sigma$), and is more precise than our temperature-only constraint. We perform null tests and consistency checks and find no evidence for significant contamination.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا