Do you want to publish a course? Click here

Collinear cluster tripartition as sequential binary fission in the $^{235}$U(n$_{rm th}$,f) reaction

189   0   0.0 ( 0 )
 Added by Avazbek Nasirov
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

The mechanism leading to the formation of the observed products of the collinear cluster tripartition is carried out within the framework of the model based on the dinuclear system concept. The yield of fission products is calculated using the statistical model based on the driving potentials for the fissionable system. The minima of potential energy of the decaying system correspond to the charge numbers of the products which are produced with large probabilities in the sequential fission (partial case of the collinear cluster tripartition) of the compound nucleus. The realization of this mechanism supposes the asymmetric fission channel as the first stage of sequential mechanism. It is shown that only the use of the driving potential calculated by the binding energies with the shell correction allows us to explain the yield of the true ternary fission products. The theoretical model is applied to research collinear cluster tripartition in the reaction $^{235}$U(n$_{rm th}$,f). Calculations showed that in the first stage of this fission reaction, the isotopes $^{82}$Ge and $^{154}$Nd are formed with relatively large probabilities and in the second stage of sequential fission of the isotope Nd mainly Ni and Ge are formed. This is in agreement with the yield of the isotope $^{68}$Ni which is observed as the product of the collinear cluster tripartition in the experiment.



rate research

Read More

The $(n,gamma f)$ process is reviewed in light of modern nuclear reaction calculations in both slow and fast neutron-induced fission reactions on $^{235}$U and $^{239}$Pu. Observed fluctuations of the average prompt fission neutron multiplicity and average total $gamma$-ray energy below 100 eV incident neutron energy are interpreted in this framework. The surprisingly large contribution of the M1 transitions to the pre-fission $gamma$-ray spectrum of $^{239}$Pu is explained by the dominant fission probabilities of 0$^+$ and $2^+$ transition states, which can only be accessed from compound nucleus states formed by the interaction of $s$-wave neutrons with the target nucleus in its ground state, and decaying through M1 transitions. The impact of an additional low-lying M1 scissors mode in the photon strength function is analyzed. We review experimental evidence for fission fragment mass and kinetic energy fluctuations in the resonance region and their importance in the interpretation of experimental data on prompt neutron data in this region. Finally, calculations are extended to the fast energy range where $(n,gamma f)$ corrections can account for up to 3% of the total fission cross section and about 20% of the capture cross section.
The $^{239}$Pu(n,f)/$^{235}$U(n,f) cross-section ratio has been measured with the fission Time Projection Chamber (fissionTPC) from 100 keV to 100 MeV. The fissionTPC provides three-dimensional reconstruction of fission-fragment ionization profiles, allowing for a precise quantification of measurement uncertainties. The measurement was performed at the Los Alamos Neutron Science Center which provides a pulsed white source of neutrons. The data are recommended to be used as a cross-section ratio shape. A discussion of the status of the absolute normalization and comparisons to ENDF evaluations and previous measurements is included.
The normalized $^{238}$U(n,f)/$^{235}$U(n,f) cross section ratio has been measured using the NIFFTE fission Time Projection Chamber from the reaction threshold to $30$~MeV. The fissionTPC is a two-volume MICROMEGAS time projection chamber that allows for full three-dimensional reconstruction of fission-fragment ionization profiles from neutron-induced fission. The measurement was performed at the Los Alamos Neutron Science Center, where the neutron energy is determined from neutron time-of-flight. The $^{238}$U(n,f)/$^{235}$U(n,f) ratio reported here is the first cross section measurement made with the fissionTPC, and will provide new experimental data for evaluation of the $^{238}$U(n,f) cross section, an important standard used in neutron-flux measurements. Use of a development target in this work prevented the determination of an absolute normalization, to be addressed in future measurements. Instead, the measured cross section ratio has been normalized to ENDF/B-VIII.$beta$5 at 14.5 MeV.
A detailed investigation on the relative isotopic distributions has been carried out for the first time in case of even-even correlated fission fragments for the $^{235}$U($n_{th}$,$f$) fission reaction. High-statistics data were obtained in a prompt $gamma$ ray spectroscopy measurement during the EXILL campaign at ILL, Grenoble, France. The extensive off-line analysis of the coincidence data have been carried out using four different coincidence methods. Combining the results from 2-dimensional $gamma-gamma$ and 3-dimensional $gamma-gamma-gamma$ coincidence analysis, a comprehensive picture of the relative isotopic yield distributions of the even-even neutron-rich fission fragments has emerged. The experimentally observed results have been substantiated by the theoretical calculations based on a novel approach of isospin conservation, and a reasonable agreement has been obtained. The calculations following the semi-empirical GEF model have also been carried out. The results from the GEF model calculations are found to be in fair agreement with the experimental results.
366 - P. Marini , J. Taieb , B. Laurent 2019
Prompt fission neutron spectra from $^{239}$Pu($n,f$) were measured for incident neutron energies from $0.7$ to $700,$MeV at the Weapons Neutron Research facility (WNR) of the Los Alamos Neutron Science Center. A newly designed high-efficiency fission chamber was coupled to the highly segmented Chi-Nu array to detect neutrons emitted in fission events. The double time-of-flight technique was used to deduce the incident-neutron energies from the spallation target and the outgoing-neutron energies from the fission chamber. Prompt fission neutron spectra (PFNS) were measured with respect to $^{252}$Cf spontaneous fission down to $200,$keV and up to about $12,$MeV for all the incident neutron energies with typical uncertainties well below $2%$ up to about $10,$MeV outgoing-neutron energy. The general trend of PFNS is well reproduced by JEFF3.3 and ENDF-BVIII.0 evaluations. Discrepancies were however observed for the low-energy part of the spectra, where evaluations overestimate the number of emitted neutrons. Neutron multiplicities and average kinetic energies as a function of incident-neutron energy are obtained experimentally with reported uncertainties below $0.4%$. Neutron multiplicities disagree with some older datasets above $6,$ MeV, indicating the need of using a high-efficiency fission detector, which does not bias the data. The measured mean kinetic energies agree with the most recent data. Evaluations fairly reproduce the trend, but fail to reproduce the experimental values within their uncertainties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا