Do you want to publish a course? Click here

Spectral and Photometric Diagnostics of Giant Planet Formation Scenarios

122   0   0.0 ( 0 )
 Added by David Spiegel
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gas-giant planets that form via core accretion might have very different characteristics from those that form via disk-instability. Disk-instability objects are typically thought to have higher entropies, larger radii, and (generally) higher effective temperatures than core-accretion objects. We provide a large set of models exploring the observational consequences of high-entropy (hot) and low-entropy (cold) initial conditions, in the hope that this will ultimately help to distinguish between different physical mechanisms of planet formation. However, the exact entropies and radii of newly-formed planets due to these two modes of formation cannot, at present, be precisely predicted. We introduce a broad range of Warm Start gas-giant planet models. Between the hottest and the coldest models that we consider, differences in radii, temperatures, luminosities, and spectra persist for only a few million to a few tens of millions of years for planets that are a few times Jupiters mass or less. For planets that are ~five times Jupiters mass or more, significant differences between hottest-start and coldest-start models persist for on the order of 100 Myrs. We find that out of the standard infrared bands (J, H, K, L, M, N) the K and H bands are the most diagnostic of the initial conditions. A hottest-start model can be from ~4.5 magnitudes brighter (at Jupiters mass) to ~9 magnitudes brighter (at ten times Jupiters mass) than a coldest-start model in the first few million years. In more massive objects, these large differences in luminosity and spectrum persist for much longer than in less massive objects. We consider the influence of atmospheric conditions on spectra, and find that the presence or absence of clouds, and the metallicity of an atmosphere, can affect an objects apparent brightness in different bands by up to several magnitudes.



rate research

Read More

122 - O. M. Guilera 2015
In the standard model of core accretion, the formation of giant planets occurs by two main processes: first, a massive core is formed by the accretion of solid material; then, when this core exceeds a critical value (typically greater than 10 Earth masses) a gaseous runaway growth is triggered and the planet accretes big quantities of gas in a short period of time until the planet achieves its final mass. Thus, the formation of a massive core has to occur when the nebular gas is still available in the disk. This phenomenon imposes a strong time-scale constraint in giant planet formation due to the fact that the lifetimes of the observed protoplanetary disks are in general lower than 10 Myr. The formation of massive cores before 10 Myr by accretion of big planetesimals (with radii > 10 km) in the oligarchic growth regime is only possible in massive disks. However, planetesimal accretion rates significantly increase for small bodies, especially for pebbles, particles of sizes between mm and cm, which are strongly coupled with the gas. In this work, we study the formation of giant planets incorporating pebble accretion rates in our global model of planet formation.
The equation of state calculated by Saumon and collaborators has been adopted in most core-accretion simulations of giant-planet formation performed to date. Since some minor errors have been found in their original paper, we present revised simulations of giant-planet formation that considers a corrected equation of state. We employ the same code as Fortier and collaborators in repeating our previous simulations of the formation of Jupiter. Although the general conclusions of Fortier and collaborators remain valid, we obtain significantly lower core masses and shorter formation times in all cases considered. The minor errors in the previously published equation of state have been shown to affect directly the adiabatic gradient and the specific heat, causing an overestimation of both the core masses and formation times.
139 - Adam Burrows 2010
Using a 3D GCM, we create dynamical model atmospheres of a representative transiting giant exoplanet, HD 209458b. We post-process these atmospheres with an opacity code to obtain transit radius spectra during the primary transit. Using a spectral atmosphere code, we integrate over the face of the planet seen by an observer at various orbital phases and calculate light curves as a function of wavelength and for different photometric bands. The products of this study are generic predictions for the phase variations of a zero-eccentricity giant planets transit spectrum and of its light curves. We find that for these models the temporal variations in all quantities and the ingress/egress contrasts in the transit radii are small ($< 1.0$%). Moreover, we determine that the day/night contrasts and phase shifts of the brightness peaks relative to the ephemeris are functions of photometric band. The $J$, $H$, and $K$ bands are shifted most, while the IRAC bands are shifted least. Therefore, we verify that the magnitude of the downwind shift in the planetary ``hot spot due to equatorial winds is strongly wavelength-dependent. The phase and wavelength dependence of light curves, and the associated day/night contrasts, can be used to constrain the circulation regime of irradiated giant planets and to probe different pressure levels of a hot Jupiter atmosphere. We posit that though our calculations focus on models of HD 209458b similar calculations for other transiting hot Jupiters in low-eccentricity orbits should yield transit spectra and light curves of a similar character.
The terrestrial planets are believed to have formed by violent collisions of tens of lunar- to Mars-size protoplanets at time t<200 Myr after the protoplanetary gas disk dispersal (t_0). The solar system giant planets rapidly formed during the protoplanetary disk stage and, after t_0, radially migrated by interacting with outer disk planetesimals. An early (t<100 Myr) dynamical instability is thought to have occurred with Jupiter having gravitational encounters with a planetary-size body, jumping inward by ~0.2-0.5 au, and landing on its current, mildly eccentric orbit. Here we investigate how the giant planet instability affected formation of the terrestrial planets. We study several instability cases that were previously shown to match many solar system constraints. We find that resonances with the giant planets help to remove solids available for accretion near ~1.5 au, thus stalling the growth of Mars. It does not matter, however, whether the giant planets are placed on their current orbits at t_0 or whether they realistically evolve in one of our instability models; the results are practically the same. The tight orbital spacing of Venus and Earth is difficult to reproduce in our simulations, including cases where bodies grow from a narrow annulus at 0.7-1 au, because protoplanets tend to radially spread during accretion. The best results are obtained in the narrow-annulus model when protoplanets emerging from the dispersing gas nebula are assumed to have (at least) the Mars mass. This suggests efficient accretion of the terrestrial protoplanets during the first ~10 Myr of the solar system.
Forming gas giant planets by the accretion of 100 km diameter planetesimals, a typical size that results from self-gravity assisted planetesimal formation, is often thought to be inefficient. Many models therefore use small km-sized planetesimals, or invoke the accretion of pebbles. Furthermore, models based on planetesimal accretion often use the ad hoc assumption of planetesimals distributed radially in a minimum mass solar nebula fashion. We wish to investigate the impact of various initial radial density distributions in planetesimals with a dynamical model for the formation of planetesimals on the resulting population of planets. In doing so, we highlight the directive role of the early stages of dust evolution into pebbles and planetesimals in the circumstellar disk on the following planetary formation. We have implemented a two population model for solid evolution and a pebble flux regulated model for planetesimal formation into our global model for planet population synthesis. This framework is used to study the global effect of planetesimal formation on planet formation. As reference, we compare our dynamically formed planetesimal surface densities with ad-hoc set distributions of different radial density slopes of planetesimals. Even though required, it is not solely the total planetesimal disk mass, but the planetesimal surface density slope and subsequently the formation mechanism of planetesimals, that enables planetary growth via planetesimal accretion. Highly condensed regions of only 100 km sized planetesimals in the inner regions of circumstellar disks can lead to gas giant growth. Pebble flux regulated planetesimal formation strongly boosts planet formation, because it is a highly effective mechanism to create a steep planetesimal density profile. We find this to lead to the formation of giant planets inside 1 au by 100 km already by pure planetesimal accretion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا