Do you want to publish a course? Click here

An upper limit on electron antineutrino mass from Troitsk experiment

155   0   0.0 ( 0 )
 Added by Vladislav Pantuev
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

An electron antineutrino mass has been measured in tritium beta-decay in the Troitsk nu-mass experiment. The setup consists of a windowless gaseous tritium source and an electrostatic electron spectrometer. The whole data set acquired from 1994 to 2004 was reanalysed. A thorough selection of data with the reliable experimental conditions has been performed. We checked every known systematic effect and got the following experimental estimate for neutrino mass squared m_{nu}^{2}=-0.67+/- 2.53 {eV}^{2}. This gives an experimental upper sensitivity limit of m_{nu}<2.2 eV and upper limit estimates m_{nu}<2.12 eV, 95% C.L. for Bayesian statistics and m_{nu}<2.05 eV, 95% C.L. for the Feldman and Cousins approach.



rate research

Read More

The KARMEN experiment at the spallation neutron source ISIS used umub from mup--decay at rest in the search for neutrino oscillations umubnueb in the appearance mode, with p( ueb,e+)n as detection reaction of ueb. In total, 15 candidates fulfill all conditions for the ueb signature, in agreement with the background expectation of 15.8+-0.5 events, yielding no indication for oscillations. A single event based likelihood analysis leads to upper limits on the oscillation parameters: sin^2(2theta)<1.7x10e-3 for Dm^2>100 eV^2 and Dm^2<0.055 eV^2 for sin^2(2theta)=1 at 90% confidence. Thus, KARMEN does not confirm the LSND experiment and restricts significantly its favored parameter region for umubnueb.
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic endpoint at 18.57 keV gives an effective neutrino mass square value of $(-1.0^{+0.9}_{-1.1})$ eV$^2$. From this we derive an upper limit of 1.1 eV (90$%$ confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of two and provides model-independent input to cosmological studies of structure formation.
The recent analysis of the normalization of reactor antineutrino data, the calibration data of solar neutrino experiments using gallium targets, and the results from the neutrino oscillation experiment MiniBooNE suggest the existence of a fourth light neutrino mass state with a mass of O(eV), which contributes to the electron neutrino with a sizable mixing angle. Since we know from measurements of the width of the Z0 resonance that there are only three active neutrinos, a fourth neutrino should be sterile (i.e., interact only via gravity). The corresponding fourth neutrino mass state should be visible as an additional kink in beta-decay spectra. In this work the phase II data of the Mainz Neutrino Mass Experiment have been analyzed searching for a possible contribution of a fourth light neutrino mass state. No signature of such a fourth mass state has been found and limits on the mass and the mixing of this fourth mass states are derived.
Based on an integrated luminosity of 1.61 fb$^{-1}$ $e^+e^-$ collision data collected with the KLOE detector at DA$Phi$NE, the Frascati $phi$-factory, a search for the $P$- and $CP$-violating decay $etatopi^{+}pi^{-}$ has been performed. Radiative $phitoetagamma$ decay is exploited to access the $eta$ mesons. No signal is observed in the $pi^{+}pi^{-}$ invariant mass spectrum, and the upper limit on the branching fraction at 90% confidence level is determined to be ${mathcal B}(etatopi^{+}pi^{-})<4.9times10^{-6}$, which is approximately three times smaller than the previous KLOE result. From the combination of these two measurements we get ${mathcal B}(etatopi^{+}pi^{-}) < 4.4times10^{-6}$ at 90% confidence level.
The Double Chooz experiment has observed 8,249 candidate electron antineutrino events in 227.93 live days with 33.71 GW-ton-years (reactor power x detector mass x livetime) exposure using a 10.3 cubic meter fiducial volume detector located at 1050 m from the reactor cores of the Chooz nuclear power plant in France. The expectation in case of theta13 = 0 is 8,937 events. The deficit is interpreted as evidence of electron antineutrino disappearance. From a rate plus spectral shape analysis we find sin^2 2{theta}13 = 0.109 pm 0.030(stat) pm 0.025(syst). The data exclude the no-oscillation hypothesis at 99.8% CL (2.9{sigma}).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا