Do you want to publish a course? Click here

Textured Superconducting State in the Heavy Fermion CeRhIn5

149   0   0.0 ( 0 )
 Added by Tuson Park
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Anisotropic, spatially textured electronic states often emerge when the symmetry of the underlying crystalline structure is lowered. However, the possibility recently has been raised that novel electronic quantum states with real-space texture could arise in strongly correlated systems even without changing the underlying crystalline structure. Here we report evidence for such texture in the superconducting quantum fluid that is induced by pressure in the heavy-fermion compound CeRhIn5. When long-range antiferromagnetic order coexists with unconventional superconductivity, there is a significant temperature difference between resistively- and thermodynamically-determined transitions into the superconducting state, but this difference disappears in the absence of magnetism. Anisotropic transport behaviour near the superconducting transition in the coexisting phase signals the emergence of textured superconducting planes that are nucleated preferentially along the {100} planes and that appear without a change in crystal symmetry. We show that CeRhIn5 is not unique in exhibiting a difference between resistive and bulk superconducting transition temperatures, indicating that textured superconductivity may be a general consequence of coexisting orders.



rate research

Read More

The order parameter and pairing mechanism for superconductivity in heavy fermion compounds are still poorly understood. Scanning tunneling microscopy and spectroscopy at ultra-low temperatures can yield important information about the superconducting order parameter and the gap structure. Here, we study the first heavy fermion superconductor, CeCu_2Si_2. Our data show the superconducting gap which is not fully formed and exhibits features that point to a multi-gap order parameter. Spatial mapping of the zero bias conductance in magnetic field reveals the vortex lattice, which allows us to unequivocally link the observed conductance gap to superconductivity in CeCu_2Si_2. The vortex lattice is found to be predominantly triangular with distortions at fields close to sim 0.7 H_{c2}.
The superconducting order parameter of the first heavy-fermion superconductor CeCu2Si2 is currently under debate. A key ingredient to understand its superconductivity and physical properties is the quasiparticle dispersion and Fermi surface, which remains elusive experimentally. Here we present measurements from angle-resolved photoemission spectroscopy. Our results emphasize the key role played by the Ce 4f electrons for the low-temperature Fermi surface, highlighting a band-dependent conduction-f electron hybridization. In particular, we find a very heavy quasi-two-dimensional electron band near the bulk X point and moderately heavy three-dimensional hole pockets near the Z point. Comparison with theoretical calculations reveals the strong local correlation in this compound, calling for further theoretical studies. Our results provide the electronic basis to understand the heavy fermion behavior and superconductivity; implications for the enigmatic superconductivity of this compound are also discussed.
We grew single crystals of the recently discovered heavy fermion superconductor UTe2, and measured the resistivity, specific heat and magnetoresistance. Superconductivity (SC) was clearly detected at Tsc=1.65K as sharp drop of the resistivity in a high quality sample of RRR=35. The specific heat shows a large jump at Tsc indicating strong coupling. The large Sommerfeld coefficient, 117mJ K-2mol-1 extrapolated in the normal state and the temperature dependence of C/T below Tsc are the signature of unconventional SC. The discrepancy in the entropy balance at Tsc between SC and normal states points out that hidden features must occur. Surprisingly, a large residual value of the Sommerfeld coefficient seems quite robust (gamma_0/gamma ~ 0.5). The large upper critical field Hc2 along the three principal axes favors spin-triplet SC. For H // b-axis, our experiments do not reproduce the huge upturn of Hc2 reported previously. This discrepancy may reflect that Hc2 is very sensitive to the sample quality. A new perspective in UTe2 is the proximity of a Kondo semiconducting phase predicted by the LDA band structure calculations.
Some recent neutron scattering works on CeRhIn5 and Ce2RhIn8, together with related resistivity and specific heat measurements, are summarized. In spite of its layered crystal structure, CeRhIn5 is shown to be 3-dimensional both magnetically and in transport. We also find that the Fisher-Langer behavior is closely followed in CeRhIn5. This may circumvent the Kondo lattice model and support applying established Fermi-liquid superconductivity theory to heavy fermion superconductors.
We present different transport measurements up to fields of 29~T in the recently discovered heavy-fermion superconductor UTe$_{2}$ with magnetic field $H$ applied along the easy magnetization a-axis of the body-centered orthorhombic structure. The thermoelectric power varies linearly with temperature above the superconducting transition, $T_{SC}= 1.5$ K, indicating that superconductivity develops in a Fermi liquid regime. As a function of field the thermolelectric power shows successive anomalies which are attributed to field-induced Fermi surface instabilities. These Fermi-surface instabilities appear at critical values of the magnetic polarization. Remarkably, the lowest magnetic field instability for $Hparallel a$ occurs for the same critical value of the magnetization (0.4 $mu_B$) than the first order metamagnetic transition at 35~T for field applied along the $b$-axis. The estimated number of charge carriers at low temperature reveals a metallic ground state distinct from LDA calculations indicating that strong electronic correlations are a major issue in this compound.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا