Do you want to publish a course? Click here

Magnetic Scaling Laws for the Atmospheres of Hot Giant Exoplanets

119   0   0.0 ( 0 )
 Added by Kristen Menou
 Publication date 2011
  fields Physics
and research's language is English
 Authors Kristen Menou




Ask ChatGPT about the research

We present scaling laws for advection, radiation, magnetic drag and ohmic dissipation in the atmospheres of hot giant exoplanets. In the limit of weak thermal ionization, ohmic dissipation increases with the planetary equilibrium temperature (T_eq >~ 1000 K) faster than the insolation power does, eventually reaching values >~ 1% of the insolation power, which may be sufficient to inflate the radii of hot Jupiters. At higher T_eq values still, magnetic drag rapidly brakes the atmospheric winds, which reduces the associated ohmic dissipation power. For example, for a planetary field strength B=10G, the fiducial scaling laws indicate that ohmic dissipation exceeds 1% of the insolation power over the equilibrium temperature range T_eq ~ 1300-2000 K, with a peak contribution at T_eq ~ 1600 K. Evidence for magnetically dragged winds at the planetary thermal photosphere could emerge in the form of reduced longitudinal offsets for the dayside infrared hotspot. This suggests the possibility of an anticorrelation between the amount of hotspot offset and the degree of radius inflation, linking the atmospheric and interior properties of hot giant exoplanets in an observationally testable way. While providing a useful framework to explore the magnetic scenario, the scaling laws also reveal strong parameter dependencies, in particular with respect to the unknown planetary magnetic field strength.



rate research

Read More

562 - A. W. Hindle , P. J. Bushby , 2021
Magnetically-driven hotspot variations (which are tied to atmospheric wind variations) in hot Jupiters are studied using non-linear numerical simulations of a shallow-water magnetohydrodynamic (SWMHD) system and a linear analysis of equatorial SWMHD waves. In hydrodynamic models, mid-to-high latitude geostrophic circulations are known to cause a net west-to-east equatorial thermal energy transfer, which drives hotspot offsets eastward. We find that a strong toroidal magnetic field can obstruct these energy transporting circulations. This results in winds aligning with the magnetic field and generates westward Lorentz force accelerations in hotspot regions, ultimately causing westward hotspot offsets. In the subsequent linear analysis we find that this reversal mechanism has an equatorial wave analogy in terms of the planetary scale equatorial magneto-Rossby waves. We compare our findings to three-dimensional MHD simulations, both quantitively and qualitatively, identifying the link between the mechanics of magnetically-driven hotspot and wind reversals. We use the developed theory to identify physically-motivated reversal criteria, which can be used to place constraints on the magnetic fields of ultra-hot Jupiters with observed westward hotspots.
92 - T.M. Rogers 2017
Observations of infrared and optical light curves of hot Jupiters have demonstrated that the peak brightness is generally offset eastward from the substellar point [1,2]. This observation is consistent with hydrodynamic numerical simulations that produce fast, eastward directed winds which advect the hottest point in the atmosphere eastward of the substellar point [3,4]. However, recent continuous Kepler measurements of HAT-P-7 b show that its peak brightness offset varies significantly in time, with excursions such that the brightest point is sometimes westward of the substellar point [5]. These variations in brightness offset require wind variability, with or without the presence of clouds. While such wind variability has not been seen in hydrodynamic simulations of hot Jupiter atmospheres, it has been seen in magnetohydrodynamic (MHD) simulations [6]. Here we show that MHD simulations of HAT-P-7 b indeed display variable winds and corresponding variability in the position of the hottest point in the atmosphere. Assuming the observed variability in HAT-P-7 b is due to magnetism we constrain its minimum magnetic field strength to be 6,G. Similar observations of wind variability on hot giant exoplanets, or lack thereof, could help constrain their magnetic field strengths. Since dynamo simulations of these planets do not exist and theoretical scaling relations [7] may not apply, such observational constraints could prove immensely useful.
Ultra-hot Jupiters are emerging as a new class of exoplanets. Studying their chemical compositions and temperature structures will improve the understanding of their mass loss rate as well as their formation and evolution. We present the detection of ionized calcium in the two hottest giant exoplanets - KELT-9b and WASP-33b. By utilizing transit datasets from CARMENES and HARPS-N observations, we achieved high confidence level detections of Ca II using the cross-correlation method. We further obtain the transmission spectra around the individual lines of the Ca II H&K doublet and the near-infrared triplet, and measure their line profiles. The Ca II H&K lines have an average line depth of 2.02 $pm$ 0.17 % (effective radius of 1.56 Rp) for WASP-33b and an average line depth of 0.78 $pm$ 0.04 % (effective radius of 1.47 Rp) for KELT-9b, which indicates that the absorptions are from very high upper atmosphere layers close to the planetary Roche lobes. The observed Ca II lines are significantly deeper than the predicted values from the hydrostatic models. Such a discrepancy is probably a result of hydrodynamic outflow that transports a significant amount of Ca II into the upper atmosphere. The prominent Ca II detection with the lack of significant Ca I detection implies that calcium is mostly ionized in the upper atmospheres of the two planets.
The technique of transmission spectroscopy allows us to constrain the chemical composition of the atmospheres of transiting exoplanets. It relies on very high signal-to-noise spectroscopic (or spectrophotometric) observations and is thus most suited for bright exoplanet host stars. In the era of TESS, NGST and PLATO, more and more suitable targets, even for mid-sized telescopes, are discovered. Furthermore, a wealth of archival data is available that could become a basis for long-term monitoring of exo-atmospheres. We analyzed archival HARPS spectroscopic time series of four host stars to transiting bloated gas exoplanets, namely WASP-76b, WASP-127b, WASP-166b and KELT-11b, searching for traces of sodium (sodium doublet), hydrogen (H$alpha$, H$beta$), and lithium (670.8 nm). The archival data sets include spectroscopic time series taken during transits. Comparing in- and out-of-transit spectra we can filter out the stellar lines and investigate the absorption from the planet. Simultaneously, the stellar activity is monitored using the Mg I and Ca I lines. We independently detect sodium in the atmosphere of WASP-76b at a 7-9 $sigma$ level. Furthermore, we report also at 4-8 $sigma$ level of significance the detection of sodium in the atmosphere of WASP-127b, confirming earlier result based on low-resolution spectroscopy. The data show no sodium nor any other atom at high confidence levels for WASP-166b nor KELT-11b, hinting at the presence of thick high clouds.
Aerosols are common in the atmospheres of exoplanets across a wide swath of temperatures, masses, and ages. These aerosols strongly impact observations of transmitted, reflected, and emitted light from exoplanets, obfuscating our understanding of exoplanet thermal structure and composition. Knowing the dominant aerosol composition would facilitate interpretations of exoplanet observations and theoretical understanding of their atmospheres. A variety of compositions have been proposed, including metal oxides and sulphides, iron, chromium, sulphur, and hydrocarbons. However, the relative contributions of these species to exoplanet aerosol opacity is unknown. Here we show that the aerosol composition of giant exoplanets observed in transmission is dominated by silicates and hydrocarbons. By constraining an aerosol microphysics model with trends in giant exoplanet transmission spectra, we find that silicates dominate aerosol opacity above planetary equilibrium temperatures of 950 K due to low nucleation energy barriers and high elemental abundances, while hydrocarbon aerosols dominate below 950 K due to an increase in methane abundance. Our results are robust to variations in planet gravity and atmospheric metallicity within the range of most giant transiting exoplanets. We predict that spectral signatures of condensed silicates in the mid-infrared are most prominent for hot (>1600 K), low-gravity (<10 m s$^{-2}$) objects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا