Do you want to publish a course? Click here

Two-Dimensional Spectral Interferometry using the Carrier-Envelope Phase

244   0   0.0 ( 0 )
 Added by Christian Ott
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two- and multi-dimensional spectroscopy is used in physics and chemistry to obtain structural and dynamical information that would otherwise be invisible by the projection into a one-dimensional data set such as a single emission or absorption spectrum. Here, we introduce a qualitatively new two-dimensional spectroscopy method by employing the carrier-envelope phase (CEP). Instead of measuring spectral vs. spectral information, the combined application of spectral interferometry and CEP control allows the measurement of otherwise inseparable temporal events on an attosecond time scale. As a specific example, we apply this general method to the case of attosecond pulse train generation, where it allows to separate contributions of three different sub-cycle electron quantum paths within one and the same laser pulse, resulting in a better physical understanding and quantification of the transition region between cutoff and plateau harmonics. The CEP-dependent separation in time between two full-cycle spaced attosecond pulses was determined to modulate by (54 +/- 16) attoseconds.

rate research

Read More

We report on tunnel ionization of Xe by 2-cycle, intense, infrared laser pulses and its dependence on carrier-envelope-phase (CEP). At low values of optical field ($E$), the ionization yield is maximum for cos-like pulses with the dependence becoming stronger for higher charge states. At higher $E$-values, the CEP dependence either washes out or flips. A simple phenomenological model is developed that predicts and confirms the observed results. CEP effects are seen to persist for 8-cycle pulses. Unexpectedly, electron rescattering plays an unimportant role in the observed CEP dependence. Our results provide fresh perspectives in ultrafast, strong-field ionization dynamics of multi-electron systems that lie at the core of attosecond science.
We present a method to distinguish the high harmonics generated in individual half-cycle of the driving laser pulse by mixing a weak ultraviolet pulse, enabling one to observe the cutoff of each half-cycle harmonic. We show that the detail information of the driving laser pulse, including the laser intensity, pulse duration and carrier-envelope phase, can be {it in situ} retrieved from the harmonic spectrogram. In addition, our results show that this method also distinguishes the half-cycle high harmonics for a pulse longer than 10 fs, suggesting a potential to extend the CEP measurement to the multi-cycle regime.
We theoretically study the carrier-envelope phase dependent inversion generated in a two-level system by excitation with a few-cycle pulse. Based on the invariance of the inversion under time reversal of the exciting field, parameters are introduced to characterize the phase sensitivity of the induced inversion. Linear and nonlinear phase effects are numerically studied for rectangular and sinc-shaped pulses. Furthermore, analytical results are obtained in the limits of weak fields as well as strong dephasing, and by nearly degenerate perturbation theory for sinusoidal excitation. The results show that the phase sensitive inversion in the ideal two-level system is a promising route for constructing carrier-envelope phase detectors.
The time-frequency structure of quantum light can be manipulated for information processing and metrology. Characterizing this structure is also important for developing quantum light sources with high modal purity that can interfere with other independent sources. Here, we present and experimentally demonstrate a scheme based on intensity interferometry to measure the joint spectral mode of photon pairs produced by spontaneous parametric down-conversion. We observe correlations in the spectral phase of the photons due to chirp in the pump. We also show that our scheme can be combined with stimulated emission tomography to quickly measure their mode using bright classical light. Our scheme does not require phase stability, nonlinearities, or spectral shaping, and thus is an experimentally simple way of measuring the modal structure of quantum light.
We present a joint experimental-theoretical study on the effect of the carrier-envelope phase (CEP) of a few-cycle pulse on the atomic excitation process. We focus on the excitation rates of argon as a function of CEP in the intensity range from 50-300 TW/cm$^2$, which covers the transition between the multiphoton and tunneling regimes. Through numerical simulations based on solving the time-dependent Schr{o}dinger equation (TDSE), we show that the resulting bound-state population is highly sensitive to both the intensity and the CEP. Because the intensity varies over the interaction region, the CEP effect is considerably reduced in the experiment. Nevertheless, the data clearly agree with the theoretical prediction, and the results encourage the use of precisely tailored laser fields to coherently control the strong-field excitation process. We find a markedly different behavior for the CEP-dependent bound-state population at low and high intensities with a clear boundary, which we attribute to the transition from the multiphoton to the tunneling regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا