No Arabic abstract
We calculate the contribution of superconducting fluctuations to the mesoscopic persistent current of an ensemble of rings, each made of a superconducting layer in contact with a normal one, in the Cooper limit. The superconducting transition temperature of the bilayer decays very quickly with the increase of the relative width of the normal layer. In contrast, when the Thouless energy is larger than the temperature then the suppression of the persistent current with the increase of this relative width is much slower than that of the transition temperature. This effect is similar to that predicted for magnetic impurities, although the proximity effect considered here results in pair-weakening as opposed to pair-breaking.
We analyse the possibility of the appearance of spontaneous currents in proximated superconducting/normal metal (S/N) heterostructure when Cooper pairs penetrate into the normal metal from the superconductor. In particular, we calculate the free energy of the S/N structure. We show that whereas the free energy of the N film $F_{N}$ in the presence of the proximity effect increases compared to the normal state, the total free energy, which includes the boundary term $F_{B}$, decreases. The condensate current decreases $F_{N}$, but increases the total free energy making the current-carrying state of the S/N system energetically unfavorable.
It is shown that in a structure consisting of a superconducting ring-shaped electrode overlapped by a normal metal contact through a thin oxide barrier, measurements of the tunnel current in magnetic field can probe persistent currents in the ring. The effect manifests itself as periodic oscillations of the tunnel current through the junction at a fixed bias voltage as function of perpendicular magnetic field. The magnitude of oscillations depends on bias point. It reaches maximum at energy eV which is close to the superconducting gap and decreases with increase of temperature. The period of oscillations dF in units of magnetic flux is equal neither to h/e nor to h/2e, but significantly exceeds these values for larger loop circumferences. The phenomenon is explained by formation of metastable states with large vorticity. The pairing potential and the superconducting density of states are periodically modulated by the persistent currents at sub-critical values resulting in corresponding variations of the measured tunnel current.
We theoretically study the magnetism induced by the proximity effect in the normal metal of ferromagnetic Josephson junction composed of two $s$-wave superconductors separated by ferromagnetic metal/normal metal/ferromagnetic metal junction (${S}/{F}/{N}/{F}/{S}$ junction). We calculate the magnetization in the $N$ by solving the Eilenberger equation. We show that the magnetization arises in the ${N}$ when the product of anomalous Greens functions of the spin-triplet even-frequency odd-parity Cooper pair and spin-singlet odd-frequency odd-parity Cooper pair in the ${N}$ has a finite value. The induced magnetization $M(d,theta)$ can be decomposed into two parts, $M(d,theta)=M^{rm I}(d)+M^{rm II}(d,theta)$, where $d$ is the thickness of $N$ and $theta$ is superconducting phase difference between two ${S}$s. Therefore, $theta$ dependence of $M(d,theta)$ allows us to control the amplitude of magnetization by changing $theta$. The variation of $M(d,theta)$ with $theta$ is indeed the good evidence of the magnetization induced by the proximity effect, since some methods of magnetization measurement pick up total magnetization in the ${S}/{F}/{N}/{F}/{S}$ junction.
When a ferromagnet is placed in contact with a superconductor, owing to incompatible spin order, the Cooper pairs from the superconductor cannot survive more than one or two nanometers inside the ferromagnet. This is confirmed in the measurements of ferromagnetic nickel (Ni) nanowires contacted by superconducting niobium (Nb) leads. However, when a thin copper (Cu) buffer layer (3 nm, oxidized due to exposure to air) is inserted between the Nb electrodes and the Ni wire, the spatial extent of the superconducting proximity range is dramatically increased from 2 to a few tens of nanometers. Scanning transmission electron microscope images verify the existence of Cu oxides and the magnetization measurements of such a 3 nm oxidized Cu film on a SiO2/Si substrate and on Nb/SiO2/Si show evidence of ferromagnetism. One way to understand the long-range proximity effect in the Ni nanowire is that the oxidized Cu buffer layer with ferromagnetism facilitates the conversion of singlet superconductivity in Nb into triplet supercurrent along the Ni nanowires.
We discuss the quasiparticle entropy and heat capacity of a dirty superconductor-normal metal-superconductor junction. In the case of short junctions, the inverse proximity effect extending in the superconducting banks plays a crucial role in determining the thermodynamic quantities. In this case, commonly used approximations can violate thermodynamic relations between supercurrent and quasiparticle entropy. We provide analytical and numerical results as a function of different geometrical parameters. Quantitative estimates for the heat capacity can be relevant for the design of caloritronic devices or radiation sensor applications.