Do you want to publish a course? Click here

Electronic structure of graphene on single crystal copper substrates

150   0   0.0 ( 0 )
 Added by Andrew Walter
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic structure of graphene on Cu(111) and Cu(100) single crystals is investigated using low energy electron microscopy, low energy electron diffraction and angle resolved photoemission spectroscopy. On both substrates the graphene is rotationally disordered and interactions between the graphene and substrate lead to a shift in the Dirac crossing of $sim$ -0.3 eV and the opening of a $sim$ 250 meV gap. Exposure of the samples to air resulted in intercalation of oxygen under the graphene on Cu(100), which formed a ($sqrt{2} times 2sqrt{2}$)R45$^{rm o}$ superstructure. The effect of this intercalation on the graphene $pi$ bands is to increase the offset of the Dirac crossing ($sim$ -0.6 eV) and enlarge the gap ($sim$ 350 meV). No such effect is observed for the graphene on Cu(111) sample, with the surface state at $Gamma$ not showing the gap associated with a surface superstructure. The graphene film is found to protect the surface state from air exposure, with no change in the effective mass observed.



rate research

Read More

Allotropes of carbon, including one-dimensional carbon nanotubes and two-dimensional graphene sheets, continue to draw attention as promising platforms for probing the physics of electrons in lower dimensions. Recent research has shown that the electronic properties of graphene multilayers are exquisitely sensitive to the relative orientation between sheets, and in the bilayer case exhibit strong electronic correlations when close to a magic twist angle. Here, we investigate the electronic properties of a carbon nanotube deposited on a graphene sheet by deriving a low-energy theory that accounts both for rotations and rigid displacements of the nanotube with respect to the underlying graphene layer. We show that this heterostructure is described by a translationally invariant, a periodic or a quasi-periodic Hamiltonian, depending on the orientation and the chirality of the nanotube. Furthermore, we find that, even for a vanishing twist angle, rigid displacements of a nanotube with respect to a graphene substrate can alter its electronic structure qualitatively. Our results identify a promising new direction for strong correlation physics in low dimensions.
We investigate the adsorption of graphene sheets on h-BN substrates by means of first-principles calculations in the framework of adiabatic connection fluctuation-dissipation theory in the random phase approximation. We obtain adhesion energies for different crystallographic stacking configurations and show that the interlayer bonding is due to long-range van der Waals forces. The interplay of elastic and adhesion energies is shown to lead to stacking disorder and moire structures. Band structure calculations reveal substrate induced mass terms in graphene which change their sign with the stacking configuration. The dispersion, absolute band gaps and the real space shape of the low energy electronic states in the moire structures are discussed. We find that the absolute band gaps in the moire structures are at least an order of magnitude smaller than the maximum local values of the mass term. Our results are in agreement with recent STM experiments.
171 - I. Deretzis , A. La Magna 2009
We present electronic structure calculations of few-layer epitaxial graphene nanoribbons on SiC(0001). Trough an atomistic description of the graphene layers and the substrate within the extended H{u}ckel Theory and real/momentum space projections we argue that the role of the heterostructures interface becomes crucial for the conducting capacity of the studied systems. The key issue arising from this interaction is a Fermi level pinning effect introduced by dangling interface bonds. Such phenomenon is independent from the width of the considered nanostructures, compromising the importance of confinement in these systems.
157 - E. Pallecchi , C. Benz , A.C. Betz 2011
We have developed metal-oxide graphene field-effect transistors (MOGFETs) on sapphire substrates working at microwave frequencies. For monolayers, we obtain a transit frequency up to ~ 80 GHz for a gate length of 200 nm, and a power gain maximum frequency of about ~ 3 GHz for this specific sample. Given the strongly reduced charge noise for nanostructures on sapphire, the high stability and high performance of this material at low temperature, our MOGFETs on sapphire are well suited for a cryogenic broadband low-noise amplifier.
Placing graphene on uniaxial substrates may have interesting application potential for graphene-based photonic and optoelectronic devices. Here we analytically derive the dispersion relation for graphene plasmons on uniaxial substrates and discuss their momentum, propagation length and polarization as a function of frequency, propagation direction and both ordinary and extraordinary dielectric permittivities of the substrate. We find that the plasmons exhibit an anisotropic propagation, yielding radially asymmetric field patterns when a point emitter launches plasmons in the graphene layer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا